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ABSTRACT

Given a collection of exact Lagrangians in a Liouville manifold, we construct a map from the Hochschild homol-
ogy of the Fukaya category that they generate to symplectic cohomology. Whenever the identity in symplectic cohomology
lies in the image of this map, we conclude that every Lagrangian lies in the idempotent closure of the chosen collection.
The main new ingredients are (1) the construction of operations on the Fukaya category controlled by discs with two
outputs, and (2) the Cardy relation.
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1. Introduction

Let M be a Liouville manifold, and let W be a finite collection of objects of its
wrapped Fukaya category. The Lagrangians we allow are exact and are modelled after a
Legendrian at infinity (see [3] and Section 2). In this paper, we define a map

H∗(O C): HH∗(W , W ) → SH∗(M),(1.1)

� This research was conducted during the period the author served as a Clay Research Fellow.

DOI 10.1007/s10240-010-0028-5



192 MOHAMMED ABOUZAID

where SH∗(M) is symplectic cohomology, and HH∗ is Hochschild homology. Symplectic
cohomology admits a canonical class called the identity which is the image of the identity
in the ordinary cohomology of M under the natural map

H∗(M) → SH∗(M)

whose importance was stressed by Viterbo in [18].

Theorem 1.1 (Generation Criterion). — If the identity lies in the image of the composition

HH∗(B, B) → HH∗(W , W ) → SH∗(M)(1.2)

for a full subcategory B, then the objects of B split-generate W .

Remark 1.2. — We present a proof of this result using the minimal amount of
technology, both from the point of view of homological algebra and holomorphic curves.
Assuming that the work [13] of M’au, Wehrheim, and Woodward on holomorphic quilts
extends to the wrapped setting (a reasonable, though by no means obvious assumption),
one can alternatively prove first that the wrapped Fukaya category, under the assumptions
of Theorem 1.1, is homologically smooth in the sense of Kontsevich (see, e.g. Section 8.1
of [12]). Namely, the theory of holomorphic quilts defines a functor from the Fukaya
category of the product M2 to the category of bimodules over the Fukaya category of M;
the image of the geometric diagonal under this functor is the diagonal bimodule. With
the help of Appendix A, one can conclude from the assumptions of Theorem 1.1 that the
geometric diagonal lies in the category split-generated by products of objects of B. From
that, the existence of a functor is sufficient to conclude that the diagonal bimodule over
W is a perfect bimodule; i.e. that it lies in the category split-generated by tensor products of
left and right Yoneda modules (see Appendix A for details about these modules). In fact,
the construction shows that only objects lying in B are required to produce the complex
exhibiting the diagonal as a perfect bimodule. From this one concludes that the objects
of B split-generate W by a generalisation of Beilinson’s argument [4] to the case where
morphism spaces are allowed to have infinite rank (the existence of such a generalisation
seems known to experts, though it does not appear in the literature in the desired form).

Combining Theorem 1.1 with recent work of Bourgeois, Ekholm and Eliahsberg
announced in [5] should imply that the unstable manifolds of a plurisubharmonic Morse
function on a Stein manifold split-generate its wrapped Fukaya category, though there
are still technical gaps in relating their symplectic field theory approach with the Floer
equations we use. In the special case of cotangent bundles, the interested reader can find
some applications developed in the papers [1, 2]. In a different direction, the exactness
assumption can be dropped, and we expect upcoming joint work with Fukaya, Oh, Ohta,
and Ono to address the case of compact (weakly unobstructed) Lagrangians.
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For compact unobstructed Lagrangians, one may construct a map analogous to
Equation (1.1) whose target is ordinary cohomology as explained in Section 13 of [10]
(see also Conjecture 1 and 2 in [6] for a discussion from a more abstract topological field
theory point of view). However, because of the lack of Poincaré duality in wrapped Floer
homology, one cannot directly import intuition from topological field theory. We bypass
these difficulties by stating Theorem 1.1 in the concrete manner given, rather than trying
to appeal to a more theoretical approach.

To prove the generation criterion, we consider, for any object K in W , the left and
right W modules Y l

K and Y r
K given by the Yoneda construction. Passing to cohomology,

these are the modules which respectively assign to a Lagrangian L the wrapped Floer
cohomology groups

HW∗(K,L) and HW∗(L,K)

which are morphism spaces in W . Using the same notation for the restriction of these
modules to B, we define a map

�: B → Y l
K ⊗ Y r

K

of B bimodules in Section 4.2; here B stands for the diagonal bimodule. Again, at the
level of cohomology, � consists of a collection of maps

HW∗(L,L′) → HW∗(K,L′) ⊗ HW∗(L,K)

for every pair (L,L′) of objects of B satisfying appropriate conditions with respect to
multiplication by morphism spaces in B. Note that composition in the Fukaya category
defines a natural map in the other direction. One should think of � as a “pre-dual”
for multiplication; an honest dual cannot be expected since morphism spaces may be of
infinite rank.

One may define Hochschild homology groups with coefficients in any bimodule
in such a way that a map of bimodules induces a map on Hochschild homology. In the
special case where the bimodule is a tensor product L ⊗ R of a left and a right module,
we have

HH∗(B, L ⊗ R) ∼= H∗(R ⊗B L).

Applying this general nonsense to our geometric situation, we conclude that �

induces a map

HH∗(�): HH∗(B, B) → H∗(Y r
K ⊗B Y l

K).(1.3)

On the other hand, composition in B defines a map

H∗(μ): H∗(Y r
K ⊗B Y l

K) → HW∗(K,K).(1.4)
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FIG. 1. — Cardy relation

In Section 5, we shall construct maps O C and C O by counting solutions to a Floer-type
equation on a disc with 1 interior puncture and appropriate boundary conditions, and
we shall prove the next result in Section 6:

Proposition 1.3. — Up to an overall sign of (−1)
n(n+1)

2 , the following diagram commutes:

HH∗(B, B)
HH∗(�)

H∗(O C)

H∗(Y r
K ⊗B Y l

K)

H∗(μ)

SH∗(M)
H∗(C O)

HW∗(K,K)

(1.5)

This a version of the Cardy relation, and requires the study of a moduli space of
pseudo-holomorphic maps whose source is an annulus. For example, if we consider an
element in Hochschild homology represented by a endomorphism of L then the compo-
sition of C O and O C corresponds to the first broken curve in Figure 1, while we interpret
the other composition as the second pair of broken curves. In this simplest situation, the
moduli spaces we use have been recently studied by Biran-Cornea and Fukaya respec-
tively in the case of monotone and unobstructed compact Lagrangians. By gluing the
interior nodes or the pair of boundary nodes, one obtains an annulus with one boundary
circle mapping to L and the other to K, and the commutativity of Diagram (1.5) fol-
lows from generalising the fact that we may interpolate between these two broken curves
through the moduli space of annuli.

We state a final algebraic Lemma proved in Appendix A before establishing the
main theorem:

Lemma 1.4. — If the identity of HW∗(K,K) lies in the image of H∗(μ), then Y r
K is a

summand of a twisted complex built from objects of B.



A GEOMETRIC CRITERION FOR GENERATING THE FUKAYA CATEGORY 195

Proof of Theorem 1.1. — The statement that B split-generates W is equivalent to the
existence, for each object K of W , of a twisted complex built from objects of B that admits
K as a summand. The previous Lemma therefore reduces the proof of split-generation to
the verification that the identity of each object lies in the image of H∗(μ).

The identity in symplectic cohomology is represented by a count of rigid holo-
morphic planes. On the other hand, the image of an element of symplectic cohomology
under H∗(C O) is obtained by counting rigid discs with one interior puncture converging
to a representative of this element, and boundary conditions along K. The result of glu-
ing a rigid plane to the interior puncture can be deformed by a standard argument (see,
e.g. Section 4.2 of [2]) to a rigid disc with boundary on K; this count precisely represents
the identity of K in its wrapped Floer cohomology group.

Under the hypothesis of Theorem 1.1, the commutativity of Diagram (1.5) there-
fore implies that the identity in HW∗(K,K) lies in the image of H∗(μ) which completes
the proof. �

Conventions. — All chain complexes are complexes of free abelian groups, with the
tensor product taken over Z unless otherwise specified. Throughout the paper, we shall
be proving that certain expressions vanish by showing that their terms correspond to the
boundary of 1-dimensional moduli spaces. Away from characteristic 2, one must in ad-
dition verify that the natural orientations on the boundaries of these moduli spaces differ
from certain product orientations by signs that are fixed by conventions for categories
of A∞ bimodules. We provide the ingredients which define the appropriate orientations,
and verify the validity of the signs in the simplest situations.

2. Geometric preliminaries

Recall that a Liouville manifold is a manifold M equipped with a 1-form λ whose
differential ω is a symplectic form and such that the vector field Zλ defined by the equa-
tion

iZλ
ω = λ

generates a complete expanding flow called the Liouville flow. Away from a compact set
in M we require that this flow be modeled after multiplication on the positive end of the
symplectisation of a contact manifold. We shall denote by ψρ the Liouville flow for time
log(ρ). In practice, we abuse notation and write

M = Min ∪∂M [1,+∞) × ∂M,

where ∂M is shorthand for ∂Min. Note that the Liouville form on the collar is given
by λ = r(λ|∂M) with λ|∂M a contact form and r the coordinate on [1,+∞). Our first
transversality assumption will be imposed on the Reeb orbits of λ|∂M:

All Reeb orbits of λ|∂M are non-degenerate.(2.1)
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Lemma 2.1. — Condition (2.1) holds for a generic choice of λ. For such a contact form, there

are only finitely many Reeb chords shorter than any given constant.

Next, we consider a finite collection Ob(W ) of exact connected properly embed-
ded Lagrangians in M, such that

λ vanishes on L ∩ ∂M × [1,+∞) if L ∈ Ob(W ).(2.2)

Note that this is precisely the condition that the intersection ∂L of L with ∂M is Legen-
drian, and that L is obtained by attaching an infinite cylindrical end to its intersection
with Min

L = Lin ∪∂L [1,+∞) × ∂L.

We shall choose a primitive

fL: L → R

for the restriction of λ to each Lagrangian L which, by Condition (2.2) is necessarily
locally constant on the cylindrical end of L.

Should we desire an integral grading on symplectic cohomology and the wrapped
Fukaya category, we must impose the following additional condition on each object of
W :

The relative first Chern class 2c1(M,L) ∈ H2(M,L) vanishes.(2.3)

The first Chern class is taken for an almost complex structure on M compatible with ω;
the notion is well-defined because the space of such almost complex structures is con-
tractible. Gradings in symplectic cohomology and in the wrapped Fukaya category re-
quire choices of

a trivialisation of (	n
CT∗M)⊗2, and a grading on each Lagrangian in(2.4)

Ob(W ).

The vanishing of the first Chern class in Condition (2.3) is precisely the obstruction to
being able to make such a choice (see [15] for details). Note that a trivialisation of 	n

CT∗M
is the same as the choice of a complex volume form on M with respect to a compatible
almost complex structure, so that we are requiring the choice of a quadratic volume form.

If, in addition, we desire for the Fukaya category to be defined over Z (rather than
only in characteristic 2), we must assume that

each Lagrangian L ∈ Ob(W ) is spin.(2.5)

Assuming this condition holds, we fix a spin structure (and orientation) on each La-
grangian. For each object of W , a choice of grading and spin structures will be fixed
from now on and go unmentioned.
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We will work with a restricted family of functions H(M) ⊂ C∞(M,R) such that,
whenever H ∈ H(M) we have

H(r, y) = r2(2.6)

away from some compact subset of M.
We fix such a function H, and write X for its Hamiltonian flow and X (L0,L1) for

the set of time-1 flow lines of X which start on a Lagrangian L0 ∈ Ob(W ) and end on
L1 ∈ Ob(W ). The relative analogue of (2.1), is the assumption that

all time-1 Hamiltonian chords of H with boundaries on L0 and L1 are(2.7)

non-degenerate.

Lemma 2.2. — For a generic Liouville form λ, Condition (2.7) holds after a Hamiltonian

perturbation of L0 and L1 which preserves Condition (2.2).

With this non-degeneracy assumption, the Maslov index defines an integral grad-
ing on the elements of X (L0,L1). We shall write deg for the Maslov index.

Next, we consider the space J (M) of almost complex structures which are com-
patible with ω, and whose restriction to the collar is of contact type in the sense that

λ ◦ J = dr.(2.8)

Given a family It ∈ J (M), parametrised by t ∈ [0,1], we consider maps

u: (−∞,+∞) × [0,1] ≡ Z → M

converging exponentially at each end to time-1 periodic chords of H, with boundary
conditions

u(s,0) ∈ L0,

u(s,1) ∈ L1

and satisfying Floer’s equation

(du − X ⊗ dt)0,1 = 0.(2.9)

Here the strip is given coordinates (s, t) and complex structure j(∂s) = ∂t , so that we may
write Floer’s equation as

∂su = −It(∂tu − X).

Given a pair x0, x1 ∈ X (L0,L1), we write R̃(x0; x1) for the set of such maps u which
converge to x0 when s approaches −∞ and to x1 at +∞. As this is a component of



198 MOHAMMED ABOUZAID

the zero-locus of an elliptic operator on the space of smooth maps on the strip, it car-
ries a natural topology. Moreover, since Equation (2.9) is invariant under translation in
the s-variable, we obtain a continuous R action on R̃(x0; x1). Following [9], the usual
transversality argument implies:

Lemma 2.3. — For a generic family It , the moduli space R̃(x0; x1) is regular; in particular it

is a smooth manifold of dimension deg(x0) − deg(x1). Unless deg(x0) = deg(x1), the action of R is

smooth and free.

We write R(x0; x1) for the quotient of R̃(x0; x1) by the R action whenever it is free,
and declare it to be the empty set otherwise.

Following Gromov and Floer, one may construct a bordification R(x0; x1) by
adding broken strips

R(x0; x1) =
∐

R(x0; y1) × R(y1; y2) × · · · × R(yk; yk+1) × R(yk+1; x1).(2.10)

Lemma 2.4. — For a generic family It , the moduli space R(x0; x1) is a compact manifold with

boundary of dimension deg(x0) − deg(x1) − 1. Moreover, the boundary is covered by the closure of the

images of the natural inclusions

R(x0; y) × R(y; x1) → R(x0; x1).

Proof. — The fact that R(x0; x1) is a manifold with boundary is a standard fact that
does not have a clean proof in the literature. In the case of 0 and 1 dimensional moduli
spaces (which is the only part we need), the result essentially goes back to Floer (see
Proposition 4.1 in [7]) and has been reproved in various settings since. In order to prove
the Lemma, is suffices therefore to prevent solutions of the Cauchy-Riemann equation
(2.9) from escaping to infinity. However, the maximum principle prevents this eventuality
from occurring. Alternatively, we may apply Lemma B.1. �

Since there is no reason for X (L0,L1) to be finite, we shall require a stronger
version of compactness.

Lemma 2.5. — For each chord x1, the moduli space R(x0; x1) is empty for all but finitely many

choices of x0.

Proof. — Choose a positive constant R such that {R} × ∂M separates x1 from
infinity. Since H depends only on the radial variable along the neck, any element
x ∈ X (L0,L1) which intersects {R} × ∂M is contained in such a hypersurface, so As-
sumption (2.1) implies that we may choose R so that no chord intersects it. As there are
only finitely many chords in any compact subset of M, it suffices to prove that R(x0; x1)

is empty whenever x0 lies in [R,+∞) × ∂M. Using Lemma B.2, this is an immediate
consequence of Lemma B.1 applied to S = u−1([R,+∞) × ∂M) and v = u|S. �
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3. Product and coproduct in wrapped Floer cohomology

The construction of the wrapped Fukaya category described in [3] is cumbersome
for the purpose of defining the operation � introduced in Section 3.3. Instead, we de-
scribe a different construction of the wrapped Fukaya category outlined in Section 3.2 of
[11]. Our conventions are normalised so that (1) the differential raises degree and (2) the
natural pair of pants product has degree 0.

3.1. Wrapped Floer cohomology. — For each pair (L0,L1) of Lagrangians, we define
the wrapped Floer complex to have underlying graded components

CWi(L0,L1;H, It) ≡
⊕

x∈X (Li,Lj )
deg(x)=i

|ox|.(3.1)

Here, |ox| is the orientation line of a certain rank-1 R-vector space ox associated to each
chord (see Section (12b) of [17]). We shall omit H and It from the notation unless neces-
sary.

In order to define a differential on the wrapped complex, we note that whenever
deg(x0) = deg(x1) + 1, we obtain an isomorphism

ox1 → ox0

from Equation (C.21) and the trivialisation of the R action on the moduli space R(x0; x1)

explained in Remark C.6.
Writing μu for the induced morphism on orientation lines, we define

μ1: CWi(L0,L1) → CWi+1(L0,L1),(3.2)

[x1] �→ (−1)i
∑

u

μu([x1]).(3.3)

Note that the right hand side is in fact a finite sum because of Lemma 2.5. The
proof that μ1 defines a differential is by now standard (see, e.g. [3]) and is omitted. We call
the resulting cohomology group wrapped Floer cohomology and denote it by HW∗(L0,L1).

3.2. Composition in the wrapped category. — Note that pullback of the moduli space
of solutions to Equation (2.9) by the Liouville flow for time log(ρ) defines a canonical
isomorphism

CW∗(L0,L1;H, It) ∼= CW∗
(
ψρL0,ψ

ρL1; H
ρ

◦ ψρ, (ψρ)∗It

)
,(3.4)

where the right hand side is computed with respect to the symplectic form ω (rather
than its pullback under ψρ ), so that the Hamiltonian flow of H

ρ
◦ ψρ is precisely the pull-

back of XH. The main observation required to define an A∞ structure on the complexes
CW∗(L0,L1) is:
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Lemma 3.1. — The function H
ρ2 ◦ ψρ lies in H(M).

Proof. — This is an elementary computation using the fact that the Liouville flow
is given on the collar by

ψρ(r, y) = (ρ · r, y).(3.5)

In particular, r2 ◦ ψρ = ρ2r2. �

Given a triple of Lagrangians L0, L1 and L2, we shall define a chain map

CW∗(L1,L2;H, It) ⊗ CW∗(L0,L1;H, It)

→ CW∗
(
ψ2L0,ψ

2L2; H
2

◦ ψ2, (ψ2)∗It

)
,

which when composed with the inverse of the isomorphism of Equation (3.4) gives the
product

μ2: CW∗(L1,L2) ⊗ CW∗(L0,L1) → CW∗(L0,L2)(3.6)

in the wrapped Fukaya category.
Let S denote the complement of three points (ξ 0, ξ 1, ξ 2) ordered counter-

clockwise on the boundary of D2. The operation μ2 will be defined by counting solutions
to an elliptic equation on S analogous to Equation (2.9) for which we must make the
following choices: Fix a map ρS from the boundary of D2 to the interval [1,2] such that

ρS(z) = 1 if z is near ξ 1 or ξ 2 and ρS(z) = 2 if z is near ξ 0.(3.7)

Let Z+ and Z− denote the positive and negative half-strips in Z and choose em-
beddings

ε0: Z− → S,

εk: Z+ → S if k = 1,2

which map ∂Z± to ∂S and converge to the respective marked points ξ k . This will be
called a choice of strip-like ends for S.

Choose a closed 1-form αS on S whose restriction to the boundary vanishes, and
whose pullback under εk agrees with dt if k = 1,2 and with 2dt if k = 0. In addition,
choose maps

HS : S → H(M),

IS : S → J (M)

whose compositions with εk agree with H and It if k = 1,2, and with H◦ψ2

4 and (ψ2)∗It if
k = 0. Given z ∈ S, we write XS(z) for the Hamiltonian flow of HS(z).
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We write R2(x0; x1, x2) for the space of maps from S to M with the following
boundary conditions

⎧
⎪⎨

⎪⎩

u(z) ∈ ψρS(z)L1 if z ∈ ∂S lies between ξ1 and ξ2,
u(z) ∈ ψρS(z)L2 if z ∈ ∂S lies between ξ2 and ξ0,
u(z) ∈ ψρS(z)L0 if z ∈ ∂S lies between ξ1 and ξ0,
lims→±∞ u ◦ εk(s, ·) = ψρS(ξ k)xk(·) for k = 0,1,2

(3.8)

and solving the differential equation

(du − XS ⊗ αS)
0,1 = 0.(3.9)

In words, the last condition in (3.8) says that the image of u converges to x1 and x2 at the
punctures corresponding to inputs, and to ψ2x0 at the one corresponding to the output.

Lemma 3.2. — For a generic family of almost complex structures IS, the moduli space

R2(x0; x1, x2) is a smooth manifold of dimension

deg(x0) − deg(x1) − deg(x2)

which, for a fixed pair (x1, x2) is empty for all but finitely many choices of chords x0. Its Gromov

bordification R2(x0; x1, x2) is a compact manifold whose boundary is covered by the codimension 1
strata

∐

y∈X (L0,L1)

R2(x0; y, x2) × R(y; x1) ∪
∐

y∈X (L1,L2)

R2(x0; x1, y) × R(y; x2)(3.10)

∪
∐

y∈X (L0,L2)

R(x0; y) × R2(y; x1, x2).

Proof. — We omit the proof of transversality, which follows from a standard Sard-
Smale argument. Since the pullback of Equation (3.9) under εk is Equation (2.9) for Floer
data (H, It) whenever k = 1,2, and Floer data (H

2 ◦ ψ2, (ψ2)∗It) whenever k = 0, we
conclude that R2(x0; x1, x2) is indeed obtained by adding the strata in Equation (3.10) to
the moduli space of solutions of Equation (3.9).

The fact R2(x0; x1, x2) is empty for all but finitely many choices of x0 follows from
Lemma B.1 applied to S = u−1([R,+∞) × ∂M) where R is chosen so that {R} × ∂M
separates the inputs form infinity (this is the same argument which proves Lemma 2.5).
This argument also shows that all elements of R2(x0; x1, x2) have images contained in a
compact subset of M, which allows us to apply the usual proof of Gromov compactness. �

We conclude that whenever deg(x0) = deg(x1) + deg(x2), the elements of
R2(x0; x1, x2) are rigid. By Equation (C.23), every such element induces an isomorphism

ox2 ⊗ ox1 → ox0,
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and hence a map μu on orientation lines. The cup product in the wrapped Fukaya cate-
gory is obtained by taking the sum of all such maps

μ2: CW∗(L1,L2) ⊗ CW∗(L0,L1) → CW∗(L0,L2)

μ2([x2], [x1]) =
∑

deg(x0)=deg(x1)+deg(x2)
u∈R2(x0;x1,x2)

(−1)deg(x1)μu([x2], [x1]).

Since the signs are exactly the same as in [17] and [3], we omit the proof of their validity.

3.3. A coproduct on the wrapped category. — In this section, we define a degree n chain
map

�0|1|0: CW∗(L|,L) →
⊕

p+q=∗+n

CWp(K,L) ⊗ CWq(L|,K),(3.11)

where the differential on the left hand side is −μ1, while the one on the right hand side
is given by

a−1 ⊗ a0 �→ (−1)deg(a0)+1μ1(a−1) ⊗ a0 − a−1 ⊗ μ1(a0).(3.12)

We write T for the punctured surface obtained by removing 3 points from the
boundary of D2; the three marked points, ordered counter clockwise will now be denoted
(ξ−1, ξ 0, ξ). If we were only giving a sketch of the construction, we would say that �0|1|0

counts holomorphic maps from T to M with the boundary condition as shown at the
bottom right of Figure 1.

In order to write the precise equation whose solutions we count, fix a map ρT from
the boundary of D2 to the interval [1,1/2] such that

ρT(z) = 1 if z is near ξ and ρT(z) = 1/2 if z is near ξk.(3.13)

Choose a positive strip-like end ε at ξ , and negative strip-like ends εk at the other marked
points, as well as a closed 1-form αT whose restriction to the boundary vanishes, and
whose pullback under ε agrees with dt while the pullbacks under the other ends agree
with dt

2 . Finally, choose maps

IT : T → J (M),

HT : T → H(M)

whose compositions with ε agree with It and H, while the compositions with εk agree
with (ψ1/2)∗It and 4(ψ1/2)∗H. We write XT for the Hamiltonian flow of HT.

Given time-1 chords x−1 ∈ X (L|,K), x0 ∈ X (K,L) and x ∈ X (L|,L), we write
R0|1|0(x−1, x0; x) for the space of maps from T to M with the following boundary and



A GEOMETRIC CRITERION FOR GENERATING THE FUKAYA CATEGORY 203

asymptotic conditions (keep in mind the idealisation of the boundary conditions, if L =
L|, shown in Figure 1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(z) ∈ ψρS(z)K if z ∈ ∂T lies between ξ−1 and ξ 0,
u(z) ∈ ψρS(z)L| if z ∈ ∂T lies between ξ 0 and ξ ,
u(z) ∈ ψρS(z)L if z ∈ ∂T lies between ξ and ξ−1,
lims→±∞ u ◦ εk(s, ·) = ψρS(z)xk(·) for k = −1,0,
lims→±∞ u ◦ ε(s, ·) = ψρS(z)x(·)

(3.14)

and solving the differential equation

(du − XT ⊗ αT)0,1 = 0.(3.15)

The standard transversality and compactness theorems hold with the same proofs
as for the moduli space R2(x0; x1, x2) so that whenever deg(x) + n = deg(x−1) + deg(x0)

this moduli space is rigid. Fixing an orientation for K, Equation (C.26) yields an isomor-
phism

ox → ox−1 ⊗ ox0

associated to every map u ∈ R0|1|0(x−1, x0; x). We write �0|1|0
u for the induced map on

orientation lines. The energy estimate of Lemma B.1 implies that for a fixed input x,
there are only finitely many possible outputs. We obtain Equation (3.11) as a sum

�0|1|0 =
∑

�0|1|0
u(3.16)

of contributions over all such discs in rigid moduli spaces R0|1|0(x−1, x0; x). Note that
there are no signs in this expression.

Lemma 3.3. — �0|1|0 is a chain map of degree n.

Proof. — The boundary of R0|1|0(x−1, x0; x) is covered by the images of the products

R0|1|0(x−1, x0; y) × R(y; x)

R(x0; y0) × R0|1|0(x−1, y0; x)

R(x−1; y−1) × R0|1|0(y−1, x0; x).

According to Equations (C.21) and (C.26), the orientations on the factors of the first
stratum induce natural isomorphisms

oy
∼= λ(R0|1|0) ⊗ ox−1 ⊗ ox0 ⊗ λ−1(L0),

ox
∼= λ−1(R̃(y; x)) ⊗ oy.
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Composing these two isomorphisms, we obtain

ox
∼= λ−1(R̃(y; x)) ⊗ λ(R0|1|0) ⊗ ox−1 ⊗ ox0 ⊗ λ−1(L0).

Note that for the purpose of defining the differential, λ−1(R̃(y; x)) is trivialised using the
vector ∂s, which after gluing gives the inward pointing vector to R0|1|0(x−1, x0; x). We
conclude that the map �0|1|0 ◦ (−μ1) differs from the map induced by natural boundary
orientation by a sign whose parity is

deg(x).(3.17)

Next, we perform the same analysis on the second type of boundary stratum, and find
that the product orientation is given by

ox
∼= λ(R0|1|0) ⊗ ox−1 ⊗ λ−1(R̃(x0; y0)) ⊗ ox0 ⊗ λ−1(L0).

Rearranging the terms introduces a sign of deg(x−1), and the gluing parameter ∂s now
agrees with the outward pointing vector. We conclude that the map −(id⊗μ1) ◦ �0|1|0

differs from the map induced by the boundary by

deg(x−1) + deg(x0) + 1 = deg(x) + n + 1.(3.18)

Finally, on the third stratum, the product orientation gives an isomorphism

ox
∼= λ(R0|1|0) ⊗ λ−1(R̃(x0; y0)) ⊗ ox−1 ⊗ ox0 ⊗ λ−1(L0)

which exactly agrees with the map induced by the boundary orientation, so that
(−1)deg(x0)+1(μ1 ⊗ id) ◦ �0|1|0 differs from the map induced by the boundary by

deg(x−1) + deg(x0) + 1 = deg(x) + n + 1.

Comparing this expression with Equations (3.17) and (3.18), we readily conclude the
desired result. �

4. ∞-refinements of the product and coproduct

4.1. A∞ structure. — In this section, we construct the higher products

μd : CW∗(Ld−1,Ld) ⊗ · · · ⊗ CW∗(L1,L2) ⊗ CW∗(L0,L1)

→ CW∗(L0,Ld)

defining the A∞ structure on the wrapped Fukaya category by studying parametrised
moduli spaces of solutions to a family of equations analogous to Equation (3.9).
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Definition 4.1. — A Floer datum DS on a stable disc S ∈ Rd with one negative and d positive

ends consists of the following choices on each component:

(1) Strip-like ends near the marked points: We have a parametrisation εk: Z± → S of each end

ξ k ∈ S whose source is Z− if k = 0 and Z+ otherwise.

(2) Time shifting map: A map ρS: ∂S̄ → [1,+∞) which is constant near each end. We write

wk,S for the value on the kth end.

(3) Basic 1-form and Hamiltonian perturbations: A closed 1-form αS whose restriction to the

boundary vanishes and a map HS: S → H(M) on each surface defining a Hamiltonian

flow XS such that the pullback of XS ⊗ αS under εk agrees with X H
wk,S

◦ψwk,S ⊗ dt.

(4) Almost complex structures: A map IS: S → J (M) whose pullback under εk agrees with

(ψwk,S)∗It .

The condition on the basic 1-forms and Hamiltonian perturbations can be split
into two conditions: The 1-forms should pullback to wk,Sdt under εk which in particular
implies that

w0,S =
∑

1≤k≤d

wk,S

while the function HS should pullback to H◦ψwk,S

w2
k,S

which is indeed an element of H(M) by

Lemma 3.1.
Points in a codimension k stratum σ ⊂ ∂Rd represent stable curves with k nodes.

Let us choose strip-like ends on curves in lower dimensional moduli spaces varying
smoothly with respect to the modulus, and which are compatible with gluings of Rie-
mann surfaces for sufficiently large gluing parameters. In particular, for each positive real
number R, we obtain an element of Rd by removing the images of (−∞,−R] × [0,1]
and [R,+∞) × [0,1] for the two sides of the node, and gluing the complements to form
a new Riemann surface. By applying this construction at every node, we obtain a chart
on Rd

(0,+∞]k × σ → Rd .(4.1)

whose image is an open neighbourhood of σ , such that each coordinate corresponds to
a gluing parameter.

We shall consider a notion of equivalence among Floer data which is weaker than
equality. We say that D1

S and D2
S are conformally equivalent if there exists a constant C so

that ρ2
S and α2

S respectively agree with Cρ1
S and Cα1

S, and

I2
S = ψC∗

I1
S,

H2
S = H1

S ◦ ψC

C2
.
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FIG. 2. — Weights for μ2

Definition 4.2. — A universal and conformally consistent choice of Floer data for the A∞
structure is a choice Dμ of Floer data for every integer d ≥ 2 and every (representative) of an element

of Rd which varies smoothly over this compactified moduli space, and whose restriction to a boundary

stratum is conformally equivalent to the product of Floer data coming from lower dimensional moduli

spaces. Moreover, in the coordinates (4.1), Floer data agree to infinite order at boundary stratum with the

Floer data obtained by gluing.

This consistency condition implies that the choices for ∂Rd are determined by
those made for lower dimensional moduli spaces up to a choice of the conformal equiv-
alence constant on each irreducible component. In particular, a choice of Floer data for
d = 2 (already performed in Section 3.2) determines such a choice of Floer data for the
two points which form the boundary of R3 up to some conformal scaling constant. The
simplest choice yields the scaling constant 2 for the disc which includes the outgoing end
and 1 for the other disc, as displayed in Figure 2, which shows the pullback of the product
XHS ⊗ αS at various ends. By gluing, we obtain Floer data for elements of R3 which are
sufficiently close to the boundary. We choose a perturbation of this glued data which van-
ishes to infinite order near the boundary, then, using the fact that the space of allowable
Floer data is contractible, we choose Floer data on the remaining part of R3. We proceed
inductively using the covering of ∂Rd by images of codimension 1 inclusions

Rd1 × Rd−d1+1 → ∂Rd(4.2)

and conclude

Lemma 4.3. — The restriction map from the space of universal and conformally consistent Floer

data to the space of Floer data for a fixed surface S is surjective.
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Let L0, . . . ,Ld denote objects of W , and consider a sequence of chords �x = {xk ∈
X (Lk−1,Lk)} if 1 ≤ k ≤ d and x0 ∈ X (L0,Ld). Given universal Floer data Dμ, we write
Rd(x0; �x) for the space of maps u: S → M whose source is an arbitrary element S ∈ Rd

with marked points (ξ 0, . . . , ξ d) and which satisfy the boundary and asymptotic condi-
tions

{
u(z) ∈ ψρS(z)Lk if z ∈ ∂S lies between ξ k and ξ k+1

lims→±∞ u ◦ εk(s, ·) = ψρS(z)xk

(4.3)

and the differential equation

(du − XS ⊗ αS)
0,1 = 0,(4.4)

where the (0,1) part is taken with respect to the S-dependent almost complex structure.
The consistency condition imposed on Dμ implies that the Gromov bordification

Rd(x0; �x) is obtained by adding the images of natural inclusions

Rd1(x0; �x 1) × Rd2(y; �x 2) → Rd(x0; �x),(4.5)

where y agrees with one of the elements of �x 1, and the sequence �x is obtained by removing
y from �x 1 and replacing it by the sequence �x 2.

Applying Lemma B.1 to achieve compactness, the standard Sard-Smale argument
to achieve transversality (see for example Section (9k) of [17]), and the index theorem to
compute expected dimensions, we conclude:

Lemma 4.4. — The moduli spaces Rd(x0; �x) are compact. In addition, for a generic choice

Dμ, they form manifolds of dimension

deg(x0) + d − 2 −
∑

1≤k≤d

deg(xk).

Assuming that deg(x0) = 2 − d + ∑
1≤k≤d deg(xk), we conclude that the elements

of Rd(x0; �x) are rigid. Choosing the orientation of Rd fixed in Appendix C.1, we obtain
a canonical homotopy class of isomorphisms

oxd
⊗ · · · ⊗ ox1 → ox0(4.6)

from Equation (C.23). Writing μu for the induced map on orientation lines, we define an
operation

μd : CW∗(Ld−1,Ld) ⊗ · · · ⊗ CW∗(L1,L2) ⊗ CW∗(L0,L1)

→ CW∗(L0,Ld)
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called the d th higher product as a sum

μd([xd], . . . , [x1]) =
∑

deg(x0)=2−d+∑
1≤k≤d deg(xk)

u∈Rd (x0;�x)

(−1)†μu([xd], . . . , [x1]),(4.7)

where the sign is given by

† =
d∑

k=1

k deg(xk).(4.8)

Proposition 4.5. — The sum of quadratic compositions of the higher products

∑

d1+d2=d+1
0≤k<d1

(−1)�k
1μd1

(
xd, . . . , xk+d2+1,μ

d2(xk+d2, . . . , xk+1), xk, . . . , x1

) = 0(4.9)

vanishes, where the value of the sign is given by

�k
1 =

∑

1≤j≤k

‖xj‖.

and ‖xj‖ = deg(xj) + 1 is the reduced degree. In particular, the operations μd form an A∞ structure.

4.2. The coproduct as a map of bimodules. — Let B be a full subcategory of W . Recall
that a bimodule P over B is a collection of graded abelian groups P (L|,L) for all pairs
of objects of B, equipped with operations

μr|1|s: CW∗(Lr−1,Lr) ⊗ · · · ⊗ CW∗(L0,L1)

⊗ P (L|0,L0) ⊗ CW∗(L|1,L|0) ⊗ · · · ⊗ CW∗(L|s,L|s−1) → P (L|s,Lr)

satisfying the quadratic equation

∑
(−1)�|�+1

|s μr−m|1|s−�(ar, . . . , am+1,μ
m|1|�(am, . . . , p, . . . , a|�),

a|�+1, . . . , a|s)

+
∑

(−1)�|�+1
|s μr|1|s−�+k+1(ar, . . . , p, . . . , a|k,μ�−k(a|k+1, . . . , a|�),

a|�+1, . . . , a|s)

+
∑

(−1)�k|sμr−m+k+1|1|s(ar, . . . , am+1,μ
m−k(am, . . . , ak+1),

ak, . . . , p, . . . , a|s) = 0,
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where the signs are given by

�|�+1
|s =

s∑

j=�+1

‖a|j‖,

�k
|s = deg(p) +

∑

1≤j≤s

‖a|j‖ +
∑

1≤j≤k

‖ak‖.

Remark 4.6. — To make sense of the notation, consider the ordering |s < |s − 1 <

· · · < |1 < _ < 1 < · · · < r, and assign the elements of CW∗(Lk,Lk+1) or CW∗(L|k,L|k−1)

their reduced degree, while p is assigned its usual degree. With this in mind, �∗∗
∗ is the sum

of the degrees of elements between ∗ and ∗∗. For more detail, the reader may consult [16]
whose conventions we have adopted up to reversing the order of the inputs, and other
minor changes of notation.

Via the Yoneda embedding, any object K of W defines a left and a right module
over B which we shall denote respectively Y l

K and Y r
K, and which associate to any object

L the graded abelian groups

Y l
K(L) = CW∗(K,L),(4.10)

Y r
K(L) = CW∗(L,K).(4.11)

In particular the tensor product Y l
K ⊗ Y r

K is an A∞-bimodule over B. The differ-
ential is given by Equation (3.12), while the higher operations vanish unless either r or s

are equal to 0, in which case we find that

μ0|1|s(p ⊗ q, a|1. . . . , a|s) = (−1)�|1
|s +1p ⊗ μs+1(q, a|1. . . . , a|s),

μr|1|0(ar, . . . , a1, p ⊗ q) = (−1)deg(q)+1μr+1(ar, . . . , a1, p) ⊗ q.

The main result we shall prove in this section relates Y l
K ⊗k Y r

K to the diagonal

bimodule B with operations μr|1|s = (−1)�|1
|s +1μr+s+1:

Proposition 4.7. — The map �0|1|0 extends to a degree n homomorphism of A∞ bimodules

�: B → Y l
K ⊗ Y r

K.(4.12)

By definition, � consists of a collection of maps

�r|1|s: CW∗(Lr−1,Lr) ⊗ · · · ⊗ CW∗(L0,L1) ⊗ CW∗(L|0,L0)

⊗ CW∗(L|1,L|0) ⊗ · · · ⊗ CW∗(L|s,L|s−1)

→ CW∗(K,Lr) ⊗ CW∗(L|s,K)
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satisfying the quadratic equation
∑

(−1)n�|�+1
|s μr−m|1|s−�(ar, . . . , am+1,�

m|1|�(am, . . . , p, . . . , a|�),(4.13)

a|�+1, . . . , a|s)

+
∑

(−1)�|�+1
|s +n+1�r−m|1|s−�(ar, . . . , am+1,μ

m|1|�(am, . . . , p, . . . , a|�),

a|�+1, . . . , a|s)

+
∑

(−1)�|�+1
|s +n+1�r|1|s−�+k(ar, . . . , p, . . . , a|k,μn−k(a|k+1, . . . , a|�),

a|�+1, . . . , a|s)

+
∑

(−1)�k|s+n+1�r−m+k|1|s(ar, . . . , am+1,μ
m−k(am, . . . , ak+1),

ak, . . . , p, . . . , a|s) = 0.

In order to construct this operation, we imitate the construction of the operations
μd , replacing Rd by the moduli space Rr|1|s discussed in Appendix C.2:

Definition 4.8. — A Floer datum DT on a stable disc T ∈ Rr|1|s consists of the following

choices on each component:

(1) Strip-like ends near the marked points: We have a parametrisation εk: Z± → T (or ε|k , or

ε) of each end ξ k ∈ T (respectively ξ |k , or ξ ) whose source is Z− if k = −1,0 and Z+
otherwise.

(2) Time shifting map: A map ρT: ∂T̄ → (0,+∞) which is constant near each end. We

write wk,T, wT or w|k,T for the value on the appropriate end.

(3) Basic 1-form and Hamiltonian perturbations: A closed 1-form αT whose restriction to the

boundary vanishes and a map HT: T → H(M) on each surface defining a Hamiltonian

flow XT such that the pullback of XT ⊗ αT under εk agrees with X H
wk,T

◦ψwk,T ⊗ dt (and

the corresponding condition near ξ |k and ξ also holds).

(4) Almost complex structures: A map IT: S → J (M) whose pullback under εk agrees with

(ψwk,T)∗It (with the corresponding condition at ξ |k and ξ ).

As before, the closedness of the 1-form implies that

w−1,T + w0,T =
∑

1≤k≤r

wk,T + wT +
∑

1≤k≤s

w|k,T.

Definition 4.9. — A universal and conformally consistent choice of Floer data for the bimodule

map � is a choice D� of Floer data for every pair of integers r, s ≥ 0, and every (representative) of

an element of Rr|1|s which varies smoothly over this compactified moduli space, such that the two Floer

data on any irreducible component of a singular disc are conformally equivalent. At each stratum of the
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FIG. 3. — Weights for �1|1|0

boundary Floer data agree, to infinite order in the coordinates coming from strip like ends, with those

obtained by gluing.

Remark 4.10. — In the special case r = s = 0 treated in Section 3.3, the weights at
the two outputs were equal; this is false in general. To see the necessity of unequal weights,
consider the simplest case where r = 1 but s = 0. The corresponding moduli space R1|1|0
is homeomorphic to a closed interval as illustrated in Figure 3, where the notation has
been simplified relative to Figure 2 by recording only the weights at the ends. Near one
endpoint, the weights correspond, up to rescaling, to the weights chosen when r = s = 0
and hence can indeed be chosen equal. However, near the other endpoint the reader can
see that the weights are not equal for the conformal constants we have chosen, and is
invited to verify that this asymmetry persists for all possible conformal constants.

The different possible configurations of singular discs correspond to the strata of
the boundary of Rr|1|s listed in Equation (C.1)–(C.5). We are requiring that the Floer data
on Rr|1|s be conformally equivalent to the data Dμ if an irreducible component comes
from the factor Rd for the appropriate d or to the data D� for smaller values of r and
s. In particular, having fixed the data Dμ so that transversality holds in Lemma 4.3, the
existence of enough such universal data to guarantee transversality follows from the same
argument as in Lemma 4.3.

Let L0, . . . ,Lr and L|0, . . . ,L|s be sequences of objects of B, and K an object of W .
Consider chords �x = {xk ∈ X (Lk−1,Lk)}r

k=1, x ∈ X (L|0,L0), �x | = {x|k ∈ X (L|k,L|k−1)}s
k=1

as well as x−1 ∈ X (K,Lr) and x0 ∈ X (L|s,K). We associate these chords to the ends
(ξ−1, ξ |s, . . . , ξ |1, ξ 0, ξ , ξ 1, . . . , ξ r) of every disc T ∈ Rr|1|s, and label the boundary com-
ponents of T with the appropriate Lagrangian. Given universal Floer data D�, we write
Rr|1|s(x−1, x0; �x |, x,�x) for the space of maps u: T → M which satisfy constraints along
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the boundary and the ends analogous to Equation (4.3), and which solve the differential
equation

(du − XT ⊗ αT)0,1 = 0,(4.14)

where the (0,1) part is taken with respect to the T-dependent almost complex structure.
Before introducing a morass of notation, it shall be helpful to recall that the bound-

ary strata of any moduli space we will construct decompose as a product of lower di-
mensional moduli spaces; in most cases these can be associated to algebraic operations.
Whenever this is the case, we shall write the products in the reverse order of the algebraic
composition.

The consistency condition imposed on Dμ implies that the Gromov bordification
Rr|1|s(x−1, x0; �x |, x,�x) is obtained by adding the following codimension 1 strata:

Whenever y−1 ∈ X (K,Lm) and �x m
1 = (x1, . . . , xm) and �x−1

m+1 = (y−1, xm+1, . . . , xr)

Rr−m+1(x−1; �x−1
m+1) × Rm|1|s(y−1, x0; �x |, x,�x m

1 ).(4.15)

Whenever y0 ∈ X (L|�,K) and �x |1
|� = (x|�, . . . , x|1) and �x |�+1

0 = (x|s, . . . , x|�+1, y0)

Rs−�+1(x0; �x |�+1
0 ) × Rr|1|�(x−1, y0; �x |1

|� , x,�x).(4.16)

Whenever y ∈ X (Lm,L|�) and �x r
m+1 = (xm+1, . . . , xr) and �x m

|� = (x|�, . . . , x|1,
x, x1, . . . , xm) and �x |�+1

|s = (x|s, . . . , x|�+1)

Rr−m|1|s−�(x−1, x0; �x |�+1
|s , y,�x r

m+1) × R�+m+1(y; �x m
|�).(4.17)

Whenever y ∈ X (L|�,L|k) and �x |
y = (x|s, . . . , x|�+1, y, x|k, . . . , x|1) and �x |k+1

|� =
(x|�, . . . , x|k+1)

Rr|1|s−�+k+1(x−1, x0; �x |
y , x,�x) × R�−k(y; �x |k+1

|� ).(4.18)

Whenever y ∈ X (Lk,Lm) and �xy = (x1, . . . , xk, y, xm+1, . . . , xr) and �x m
k+1 =

(xk+1, . . . , xm)

Rr−m+k+1|1|s(x−1, x0; �x |, x,�xy) × Rm−k(y; �x m
k+1).(4.19)

In order to see that these cases cover all possible breakings of virtual codimension
1, we first observe that one possibility is the breaking of a strip; if the breaking takes place
at an input, the position relative to x determines which of the last three strata accounts
for it, and it otherwise appears in the first two strata.

The remaining possibilities correspond to both components being stable; these
should be labelled by the strata of the abstract moduli space Rr|1|s: Indeed, the first two
cases correspond to the codimension 1 strata (C.1) and (C.2), while the next three cases
correspond to the remaining strata (C.3)–(C.5).

Using Lemma B.1 to prove compactness, and the usual Sard-Smale argument to
prove transversality, we conclude:
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Lemma 4.11. — For fixed inputs (�x |, x,�x), there are finitely many pairs (x−1, x0) such that the

moduli spaces Rr|1|s(x−1, x0; �x |, x,�x) are non-empty. Moreover, those which are not empty are compact

and they form manifolds with boundary of dimension

deg(x0) + deg(x−1) − n + r + s − deg(x) −
∑

1≤k≤r

deg(xk) −
∑

1≤k≤s

deg(x|s)(4.20)

for generic data D�.

Assuming that the expression in Equation (4.20) vanishes, the elements of
Rr|1|s(x−1, x0; �x |, x,�x) are rigid. Using Equation (C.26), and the orientation of Rr|1|s fixed
in Appendix C, we obtain an isomorphism

oxr
⊗ · · · ⊗ ox1 ⊗ ox ⊗ ox|1 ⊗ · · · ⊗ ox|s

∼= ox−1 ⊗ ox0 .

Writing �u for the induced map on orientation lines, we define

�r|1|s =
∑

(−1)‡�u,(4.21)

where the sum is taken over rigid elements of the moduli spaces Rr|1|s(x−1, x0; �x |, x,�x),
and the sign is given by

‡ =
s∑

j=1

(s − j + 1)deg(x|j) + s deg(x) +
r∑

j=1

( j + s)deg(xj).(4.22)

The proof the next result follows from matching the terms of Equation (4.13) with the
boundary strata listed before Lemma 4.11. The sign verification is simply a tedious ex-
tension of Lemma 3.3.

Lemma 4.12. — The operations �r|1|s defined in Equation (4.21) satisfy Equation (4.13),

and hence define a map of bimodules.

5. Maps relating open and closed strings

5.1. Symplectic cohomology

5.1.1. Breaking the S1 symmetry. — Let F: S1 × M → R be a smooth non-negative
function such that

F and λ(XF) are uniformly bounded in absolute value, and there is a
sequence Ri → +∞ such that F(t, r, y) vanishes if r lies in some open
neighbourhood of Ri.

(5.1)
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The choice of F is meant to break the S1-invariance of Hamiltonian orbits of H by
considering instead the orbits of

HS1(t,m) ≡ H(m) + F(t,m).

In particular, we write XS1 for the time-dependent Hamiltonian vector field of HS1 whose
set of time-1 periodic orbits will be denoted O.

Lemma 5.1. — For a generic function F satisfying Assumption (5.1), all time-1 periodic orbits

of XS1 are non-degenerate.

Proof. — Since time-1 Hamiltonian orbits of H correspond to Reeb orbits of λ|∂M,
and since the length spectrum of Reeb orbits is discrete by Assumption (2.1), we may
choose a sequence Ri → +∞ which does not intersect the length spectrum. In particular,
F may be picked arbitrarily among C1 bounded functions in a neighbourhood of the
orbits of XS1 , which implies non-degeneracy for generic choices of perturbations. �

Choosing conventions compatible with the ones for Lagrangians, we define the
degree of y ∈ O in terms of the Conley-Zehnder index as

deg(y) = n − CZ(y).(5.2)

Given an S1-dependent family IS1 ∈ J (M), we consider maps

u: (−∞,+∞) × S1 → M

converging exponentially at each end to a time-1 periodic orbit of HS1 , and satisfying
Floer’s equation

(du − XS1 ⊗ dt)0,1 = 0(5.3)

with respect to the S1-dependent almost complex structure IS1 . Unless y0 = y1, we write
M(y0, y1) for the quotient by R of the moduli space of solutions to the Cauchy Riemann
equation (5.3) with asymptotic limits y0 at s = −∞ and y1 at s = +∞, and M(y0, y1) for
its Gromov bordification. The analogue of Lemma 2.4 holds:

Lemma 5.2. — For a generic family IS1 , the moduli space M(y0, y1) is a compact manifold

with boundary of dimension deg(y0) − deg(y1) − 1, whose boundary is covered by the closure of the

natural inclusions

M(y0, y) × M(y, y1) → M(y0, y1).

Moreover, for each orbit y1, the moduli space M(y0, y1) is empty for all but finitely many choices of y0.

Proof. — The perturbation F prevents us from directly applying the maximum
principle to prove compactness. However, choosing Ri sufficiently large, Lemmas B.1
and B.2 imply that all elements of M(y0, y1) are contained within the compact domain
r ≤ Ri . �



A GEOMETRIC CRITERION FOR GENERATING THE FUKAYA CATEGORY 215

5.1.2. The symplectic chain complex. — Consider the graded abelian group SC∗ with
components

SCi(M) ≡
⊕

y∈O
deg(y)=i

|oy|.(5.4)

Here, |oy| is again the orientation line on a rank-1 real vector space oy associated to each
periodic orbit in Definition C.3.

The differential on the symplectic chain complex is defined analogously to the
definition of the differential in wrapped Floer cohomology as a sum of contributions of
rigid cylinders u ∈ M(y0, y1):

∂ : SCi(M) → SCi+1(M)(5.5)

[y1] �→ (−1)i
∑

u

∂u([y1]),

where ∂u is the map induced on orientation lines by the isomorphism coming from Equa-
tion (C.20). The finiteness of the right hand side this time follows from Lemma 5.2. The
cohomology of this complex will be denoted SH∗(M), and is called symplectic cohomology.

5.2. From the closed to the open sector. — In this section, we define a chain map

C O: SC∗(M) → CW∗(K,K)(5.6)

for every object K of W . The reader should keep in mind the surface at the top left of
Figure 1.

Let T1
1 denote the complement of an interior marked point σ and a boundary

marked point ξ 0 on a disc. Up to biholomorphism, we may assume that we are consider-
ing the unit disc with σ the origin and ξ 0 equal to 1. Using polar coordinates, we fix the
positive cylindrical end

ε1: S1 × [0,+∞) → T1
1(5.7)

ε1(θ, r) = e−(r+iθ)+iπ(5.8)

near σ , a negative strip-like end ε0 near ξ 0, and a closed 1-form α1
1 whose pullback under

εk agrees with dt and whose restriction to the boundary vanishes. In addition, choose
1-forms β1

1 and γ 1
1 whose restrictions to the boundary also vanish, and whose pullbacks

under ε1 agree respectively with dt and 0 while their pullbacks under ε0 are 0 and dt. We
require that the following conditions hold

⎧
⎨

⎩

α1
1 ∧ β1

1 = α1
1 ∧ γ 1

1 = β1
1 ∧ γ 1

1 = 0,

dγ 1
1 ≤ 0,

{dβ1
1 �= 0} ⊂ {dγ 1

1 �= 0}.
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Finally, we pick a map I1
1: T1

1 → J (M) whose pullback under εk agrees with (ψ2)∗It if
k = 0 and IS1 if k = 1.

Given a time-1 orbit y1 of XS1 , and a time-1 chord x0 with both endpoints on K,
we write R1

1(x0; y1) for the space of maps u from T1
1 to M with the following boundary

conditions
⎧
⎨

⎩

u(z) ∈ ψ2K if z ∈ ∂T1
1

lims→−∞ u ◦ ε0(s, ·) = ψ2 ◦ x0(·)
lims→+∞ u ◦ ε1(s, ·) = y1(·)

(5.9)

and solving the differential equation

(du − XH ⊗ α1
1 − XF ⊗ β1

1 − (X H
2 ◦ψ2 − XH) ⊗ γ 1

1 )
0,1 = 0.(5.10)

The key point is that the pullback of the above equation under ε1 agrees with Equa-
tion (5.3), while its pullback under ε0 agrees with Equation (2.9) up to the symplectically
conformal map ψ2. In proving compactness, we simply note that H

2 ◦ ψ2 − H agrees
with r2 on the cylindrical end, which implies that away from a compact subset of M,
(H

2 ◦ ψ2 − H)dγ 1
1 agrees with r2dγ 1

1 and hence dominates Fdβ1
1 since F is uniformly

bounded. In particular, the hypothesis of Lemma B.1 holds if {Ri} × ∂M separates y1

from infinity, and we let S = u−1([Ri,+∞) × ∂M). Applying the usual transversality ar-
gument, we conclude

Lemma 5.3. — For a generic family I1
1, the Gromov bordification of the moduli space R1

1(x0; y1)

is a compact manifold with boundary of dimension

deg(x0) − deg(y1)

which, for fixed y1 is empty for all but finitely many chords x0. The codimension 1 boundary strata are

the images of the natural inclusions

∐
R(x0; x1) × R1

1(x1; y1) ∪
∐

R1
1(x0; y0) × M(y0; y1) → ∂R1

1(x0; y1).(5.11)

The outcome is that whenever deg(x0) = deg(y1) the moduli space R1
1(x0; y1) is

rigid, so every element u gives an isomorphism

oy1 → ox0,

coming from Equation (C.22), and hence a map C Ou on orientation lines. We define

C O =
∑

C Ou(5.12)

with the sum taken over all rigid discs. The argument for the validity of the signs is
essentially the same as the one for the proof that the differential in the wrapped Floer
complex squares to 0, and hence is omitted.
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5.3. From the open to the closed sector. — In Appendix C.3, we construct a moduli
space R1

d of abstract discs with one interior outgoing end, and several boundary end.
The main result of this section is:

Lemma 5.4. — The counts of solutions to ∂ operators parametrised by the moduli spaces R1
d

define maps

O C d : CW∗(Ld−1,L0) ⊗ · · · ⊗ CW∗(L1,L2) ⊗ CW∗(L0,L1) → SC∗(M)(5.13)

which shift degree by n − d + 1 and are the components of a degree n chain map

O C: CC∗(B, B) → SC∗(M),(5.14)

where the left hand-side is the cyclic bar complex of B equipped with the differential computing Hochschild

homology.

Recall that to each A∞ category, one may assign a Hochschild homology group
which is the homology of the cyclic bar complex with respect to the differential

b(ad ⊗ · · · ⊗ a1) =
∑

i+j≤d

(−1)§μd−j−1(ai−1, . . . , a1, ad, . . . , ai+j+1)(5.15)

⊗ ai+j ⊗ . . . ⊗ ai

+
∑

i+j≤d

(−1)�i−1
1 ad ⊗ · · · ⊗ ai+j+1 ⊗ μj+1(ai+j, . . . , ai)

⊗ ai−1 ⊗ . . . ⊗ a1,

where the first sign is given by

§ = �i−1
1 · (1 + �d

i ) + �d−1
i + 1.(5.16)

Remark 5.5. — Note that our cyclic bar complex is equipped with a cohomological
differential, such that the degree of ad ⊗ · · · ⊗ a1 given by

‖ad ⊗ · · · ⊗ a1‖ = deg(ad) +
d−1∑

i=1

‖ai‖.(5.17)

The simplest of these operations (d = 1) maps the wrapped Floer complex of a
Lagrangian L to the symplectic chain complex. The labelled curve controlling it appear
at the top right of Figure 1. By now, the reader should be quite familiar with our method
of constructing operations from moduli spaces, so instead of illustrating the case d = 1,
we jump directly to the general one.
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Definition 5.6. — A Floer datum DS on a stable disc S ∈ R1

d with d positive boundary

punctures (ξ 1, . . . , ξ d) and one negative interior puncture σ consists of the following choices on each

component:

(1) Strip-like ends near the punctures: we have maps εk: Z+ → S for each 1 ≤ k ≤ d

converging at the end of the half-strip Z+ to ξ k . In addition, we fix a cylindrical end

ε0: (−∞,0] × S1 → S for σ which extends to a biholomorphism (−∞,1] × S1 →
S − σ taking (1,1) to ξ d .

(2) Time shifting map: A map ρS: ∂S̄ → [1, d] which is constant near each marked point. We

write wk,S for the value on the kth end and set

w0,S =
d∑

k=1

wk,S.(5.18)

(3) Basic 1-form and Hamiltonian perturbations: A closed 1-form αS whose restriction to the

boundary vanishes and a map HS: S → H(M) on each surface such that the pullback of

XHS ⊗ αS under εk agrees with X H
wk,S

◦ψwk,S ⊗ dt.

(4) Sub-closed 1-form: A 1-form βS which may be written as the product of a smooth function

with αS, satisfying dβS ≤ 0, and whose pullback under εk vanishes unless k = 0, in which

case it agrees with dt.

(5) Almost complex structures: A map IS: S → J (M) whose pullback under εk agrees with

(ψwk,S)∗It unless k = 0 in which case it agrees with (ψw0,S)∗IS1 .

Definition 5.7. — Universal and conformally consistent Floer data for the map O C consist of

a choice DO C of Floer data for every integer d ≥ 1 and every (representative) of an element of R1

d which

varies smoothly over the compactified moduli space. The two natural Floer data (coming from DO C or

Dμ) on any irreducible component of a singular disc should be conformally equivalent, and the Floer data

should agree to infinite order near each boundary stratum with those obtained by gluing.

In particular, Floer data have been chosen for integers less than d , the data on
the boundary of R1

d is determined, via the maps described in the discussion surrounding
Equation (C.7), by the choice of Floer data Dμ.

Consider a collection of Lagrangians L0,L1, . . . ,Ld with Ld = L0 and a sequence
of chords �x = {x1, . . . , xd} with xk ∈ X (Lk−1,Lk) for 1 ≤ k ≤ d , as well as an orbit y0 ∈ O.
We define R1

d(y0; �x) to be the moduli space of maps u: S → M, with S an arbitrary
element of R1

d , satisfying the boundary and asymptotic conditions

⎧
⎨

⎩

u(z) ∈ ψρS(z)Lk if z ∈ ∂S lies between ξ k and ξ k+1

lims→±∞ u ◦ εk(s, ·) = ψwk,Sxk(·) if 1 ≤ k ≤ n

lims→±∞ u ◦ ε0(s, ·) = ψw0,Sy0(·)
(5.19)
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and solving the differential equation

(du − XHS ⊗ αS − X F
w0,S

◦ψw0,S ⊗ βS)
0,1 = 0,(5.20)

where the (0,1) part is taken with respect to the S-dependent almost complex structure,
and the function F is the one appearing in the definition of symplectic cohomology, see,
e.g. Condition (5.1).

The consistency condition imposed on DO C implies that the Gromov bordification
R1

d(y0; �x) is obtained by adding the images of natural inclusions

M(y0; y1) × R1

d(y1; �x) → ∂R1

d(y0; �x),(5.21)

R1

d(y0; �x 1) × Rd2(x; �x 2) → ∂R1

d(y0; �x),(5.22)

where in the second type of stratum, x agrees with one of the elements of �x 1 and the
sequence obtained by removing x from �x 1 and replacing it by the sequence �x 2 agrees
with �x up to cyclic ordering. Since dβS is semi-negative and F is positive, Lemma B.1
easily applies to this moduli space so we conclude

Lemma 5.8. — The moduli spaces R1

d(y0; �x) are compact and there are only finitely many

choices of orbits y0 for which they are non-empty once the input sequence �x is fixed. In addition, for generic

universal and conformally consistent Floer data DO C they form manifolds of dimension

deg(y0) − n + d − 1 −
∑

1≤k≤d

deg(xk).

Assuming that deg(y0) = n − d + 1 + ∑
1≤k≤d deg(xk), we conclude that the ele-

ments of R1
d(y0; �x) are rigid. Orienting the tangent space of R1

d using Equation (C.6) and
applying Equation (C.24), we obtain for each disc u an isomorphism

oxd
⊗ · · · ⊗ ox1 → oy0 .(5.23)

Writing O C u for the induced map on orientation lines, we define the map O C d in Equa-
tion (5.13) to be the sum

O C d([xd], . . . , [x1])(5.24)

=
∑

deg(y0)=n−d+1+∑
1≤k≤d deg(xk)

u∈R1
d (y0,�x)

(−1)deg(xd )+† O C u([xd], . . . , [x1]),

where † is given in Equation (4.8).
By comparing the boundary strata in Equation (5.21) and (5.22) with the formula

for the differential b on the cyclic bar complex, we conclude that Lemma 5.4 holds up to
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signs. To check it in the simplest situation, we let d = 1, and note that in this case † =
deg(xd), so that O C 1 agrees with the sum of the maps O C u. The boundary of R1

1(y0; x1)

is covered by

R1
1(y0, x0) × R(x0; x1),

M(y0; y1) × R1
1(y1; x1).

In the first case, the boundary orientation is given by an isomorphism

ox1
∼= λ−1(R̃(x0; x1)) ⊗ λ(R1

1) ⊗ oy0 ⊗ λ(L0).

Keeping in mind that the translation by ∂s agrees with an inward pointing normal vector
after gluing, we conclude that the restriction of O C ◦ b to CC1(B, B), which is given by
−O C ◦ μ1 agrees with the map induced at the boundary up to a sign whose parity is

1 + deg(x1).(5.25)

On the other boundary component,

ox1
∼= λ(R1

1) ⊗ λ−1(M̃(y0; y1)) ⊗ oy0 ⊗ λ(L0).

So that ∂ ◦ O C agrees with the map induced at the boundary up to a sign of parity

deg(y0) = deg(x1) + n.(5.26)

Comparing this with Equation (5.25), we conclude that O C 1 is indeed a degree n chain
map.

6. The Cardy relation

The next few sections construct the appropriate chain-level models for the maps
described in Equations (1.3) and (1.4), before giving the proof of Proposition 1.3.

6.1. Algebraic preliminaries. — Let L and R be respectively left and right B modules.
The tensor product of R and L over B is defined to be the chain complex

⊕

L0,...,Ld∈Ob(B)

R(Ld) ⊗ CW∗(Ld−1,Ld) ⊗ · · · ⊗ CW∗(L0,L1) ⊗ L(L0)(6.1)

with grading

deg(p ⊗ ad ⊗ . . . ⊗ a1 ⊗ q) = deg(p) +
∑

‖ai‖ + deg(q)
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and differential

p ⊗ ad ⊗ . . . ⊗ a1 ⊗ q �→
∑

p ⊗ ad ⊗ · · · ⊗ a�+1 ⊗ μ�|1(a�, . . . , a1, q)

+
∑

(−1)deg(q)+��
1μ1|d−�(p, ad, . . . , a�+1)

⊗ a� ⊗ · · · ⊗ a1 ⊗ q

+
∑

(−1)deg(q)+��
1p ⊗ ad ⊗ · · · ⊗ a�+k+1

⊗ μk(a�+k, . . . , a�+1) ⊗ a� ⊗ · · · ⊗ a1 ⊗ q.

The map induced by � at the level of Hochschild chains is given by

CC∗(�)(ad ⊗ . . . ⊗ a1) =
∑

(−1)�T (�r|1|s(ar, . . . , a1, ad, ad−1, . . . , ad−s)(6.2)

⊗ ad−s−1 ⊗ · · · ⊗ ar+1),

where T is the maps which reorders the factors

T (q ⊗ p ⊗ ad−s−1 ⊗ · · · ⊗ ar+1) = (−1)◦p ⊗ ad−s−1 ⊗ · · · ⊗ ar+1 ⊗ q

and the signs are given by the formulae

� = �r
1 · (1 + �d

r+1) + n�d−s−1
r+1 ,(6.3)

◦ = deg(q)(deg(p) + �d−s−1
r+1 ).(6.4)

We define HH∗(�) to be the map induced by CC∗(�) on homology groups. Note that
since � is a chain map of degree n, so is CC∗(�).

The remaining map in the diagram (1.5) comes from the chain-level composition

μ: Y r
K ⊗B Y l

K → HW∗(K,K),(6.5)

p ⊗ ad ⊗ · · · ⊗ a1 ⊗ q �→ (−1)deg(q)+�d
1μd+2(p, ad, . . . , a1, q)(6.6)

which may be easily verified to be a chain map (of degree 0).

6.2. Construction of the first homotopy. — In order to prove Proposition 1.3, we must
construct a homotopy between the two compositions in the following square:

CC∗(B, B)
CC∗(�)

O C

Y r
K ⊗B Y l

K

μ

SC∗(M)
C O

CW∗(K,K).

(6.7)
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FIG. 4. — Comparing ratios of weights

In particular, we must construct a map

H: CC∗(B, B) → CW∗(K,K)(6.8)

satisfying

(−1)nμ1 ◦ H + H ◦ b + μ ◦ CC∗(�) − C O ◦ O C = 0.(6.9)

Unfortunately, we shall have to construct this homotopy in two steps, because the
compatibility conditions between the Floer data D� and Dμ were meant to ensure that
� defines a map of A∞-bimodules, but did not incorporate any other restrictions, so that
while the composition μ ◦ CC∗(�) can be interpreted as a count of broken curves, these
cannot be glued in general. The problem does not occur for the simplest possible gluing
(the bottom configuration in Figure 1), but already appears in the next simplest situations
in Figure 4 which shows two sets of broken curves, with weights labelling the ends of each
component. To keep the figures uncluttered, we have not tried to match the ends that
need to be glued. Note that on the right side, gluing can only be performed if w0 = w−1

while on the left w1 = w3 is required. It should be apparent from Figures 2 and 3 that
these conditions cannot hold in general. Moreover, changing the conformal constants will
not resolve this problem.

Our first task is therefore to show that μ◦CC∗(�) is homotopic to a map counting
broken curves for which we may apply the usual gluing theory. We shall do this by con-
sidering a family where the weights are allowed change. The endpoint of this homotopy
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is a map CC∗(B, B) → CW∗(K,K) which has no reason to factor on the nose through
Y r

K ⊗B Y l
K. Not having to factor through this space gives us the extra flexibility to correct

the weight as necessary. The space parametrising the curves counted in this homotopy is
described in Section C.5 and is of the form:

Pd = [0,1] ×
⋃

r+s+d1−1=d

Rd−r−s+1 × Rr|1|s/ ∼ .

Definition 6.1. — A Floer datum DS1(t,S2) on an element (t,S1,S2) of Pd consists of a

Floer datum on S1 ∈ Rd−r−s+1 in the sense of Definition 4.1. We write HS1(t,S2), wk,S1(t,S2) and

so on for the maps and constants that constitute DS1(t,S2).

A universal and conformally consistent choice of Floer data for the first homotopy is a choice DH1

of Floer data for every integer d ≥ 1, and every (representative) of an element of Pd which varies smoothly

over the compactified moduli space, and is compatible with Dμ in the following sense:

(1) The restriction of DH1 to (1,S1,S2) agrees with Dμ on S1.

(2) The restriction of DH1 to a component of S1 which does not contain the outgoing end is

conformally equivalent to the restriction of Dμ.

(3) The two Floer data on a disc lying on the boundary stratum (C.17) are conformally equiva-

lent.

In addition, the ratio between the weights on the first and last incoming ends for the restriction of

DH1 to (0,S1,S2) agrees with the ratio of the weights coming from D� on the corresponding outgoing

ends of S2:

w1,S1(0,S2)

wd−r−s+1,S1(0,S2)
= w0,S2

w−1,S2

.(6.10)

We write Df for the restriction of DH1 to P 0
d .

As usual, the construction of universal and consistent data may be done inductively.
One starts by choosing Floer data whenever d = 1 and t = 0; in this situation, S1 is
necessarily a disc with two inputs. Except for Condition (6.10), the choice of the data
on such a disc is arbitrary. The first consistency condition in Definition 6.1 determines
a choice of Floer data whenever t = 1, and we interpolate arbitrarily between these two
choices.

Assuming a choice of data has been fixed for integers smaller than d , we note that
the third condition in Definition 6.1 determines a choice of Floer data on the closure of
the locus of ∂Pd where t �= 0,1. On the intersection of this stratum with the set t = 0,
Condition (6.10) holds by induction. We first extend the choice of Floer data on the
remainder of the stratum t = 0 in such a way that Condition (6.10) still holds, then inter-
polate between this choice and the one fixed by the first consistency condition at t = 1.
This provides an inductive construction of Floer data DH1 .
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Consider a collection of Lagrangians L0,L1, . . . ,Ld with Ld = L0 and a sequence
of chords �x = {x1, . . . , xd} with xk ∈ X (Lk−1,Lk) for 1 ≤ k ≤ d , as well as a chord x0 ∈
X (K,K). We define the moduli space Pd(x0; �x) to be the union, for all positive integers r

and s such that 0 ≤ r + s < d , and over all pairs of chords

(y−1, y0) ∈ X (K,Lr) × X (Ld−s−1,K)

and t ∈ [0,1] of the moduli space of maps (u1, u2): S1 ∪ S2 → M with u2 ∈ Rr|1|s(y−1, y0;
�x r

1, xd,�x d−1
d−s ) and u1 is a solution to Equation (3.9) for the Floer datum DS1(t,S2) with

asymptotic data (y−1,�x d−s−1
r+1 , y0) at the inputs, and x0 at the output.

Remark 6.2. — Since the Floer datum on S1 depends on S2, there is no natural way
to describe Pd(x0; �x) as a union of products of the moduli spaces Rr|1|s(y−1, y0; �x r

1, xd,�x d−1
d−s )

with another moduli space.

Lemma 6.3. — For generic Floer data DH1 , the moduli space Pd(x0,�x) is a compact manifold

with boundary of dimension

deg(x0) − n + d −
d∑

k=1

deg(xk).

Writing P 0
d (x0; �x) for the subset of Pd(x0; �x) where t = 0, we find that the consis-

tency conditions imposed on DH1 imply that the boundary of Pd(x0; �x) is covered by the
closures of the images of natural inclusions of the following moduli spaces:

P 0
d (x0; �x)(6.11)

Rr|1|s(y−1, y0; �x r
1, xd,�x d−1

d−s ) × Rd−r−s+1(x0; y−1,�x d−s−1
r+1 , y0)

(y−1, y0) ∈ X (K,Lr)

R(x0; x) × Pd(x; �x) x ∈ X (K,K)

Pd1(x0; �x1) × Rd−d1+1(x; �x2) x ∈ X (Li,Li+j)

where in the last type of stratum, i + j is computed modulo d , x agrees with one of the
elements of �x 1, and the sequence obtained by removing x from �x 1 and replacing it by the
sequence �x 2 agrees with �x up to cyclic ordering. Taking the intersection of the last two
type of strata with the boundary of P 0

d (x0; �x), we find that ∂P 0
d (x0; �x) is covered by the

closures of codimension 1 strata:

R(x0; x) × P 0
d (x; �x) x ∈ X (K,K)(6.12)

P 0
d1
(x0; �x1) × Rd−d1+1(x; �x2) x ∈ X (Li,Li+j).(6.13)



A GEOMETRIC CRITERION FOR GENERATING THE FUKAYA CATEGORY 225

Although P 0
d (x0; �x) is not a product, Equations (C.23) and (C.26) along with

our preferred orientations of Rr|1|s and Rd−r−s+1 imply that every rigid pair (u1, u2) ∈
P 0

d (x0; �x) induces a map

oxd
⊗ · · · ⊗ ox1 → ox0 .

Writing f(u1,u2) for the map induced on orientation lines, we define

f =
∑

(−1)deg(xd )+†1+‡2+◦+�f(u1,u2),(6.14)

where †1 is the sign appearing in Equation (4.8), applied to u1, and ‡2 comes from Equa-
tion (4.22) applied to u2, and the other two signs come from Equations (6.4) and (6.3).

Lemma 6.4. — f is a chain map of degree n, which is homotopic to the composition μ ◦
CC∗(�).

Proof. — The two types of strata appearing in Equations (6.12) and (6.13) corre-
spond respectively to the compositions ∂ ◦ f and f ◦ b which implies that f is a chain map.
The decomposition of the boundary of Pd(x0,�x) given after Lemma 6.3 shows that the
count of rigid elements of Pd(x0,�x) defines a homotopy between f and μ ◦ CC∗(�). To
check the signs, note that the expression appearing in Equation (6.14) reflects the sum of
all the signs by which the composition μ ◦ CC∗(�r|1|s) differs from the map induced by
the product orientation on P 0

d1
(x0; �x1) × Rd−d1+1(x; �x2). �

6.3. Construction of the second homotopy. — In this section, we define a homotopy be-
tween the map f constructed in the previous section, and the composition C O ◦ O C . We
start by making auxiliary choices to perturb the Cauchy-Riemann equation on elements
of a moduli spaces of annuli described in Appendix C.4:

Definition 6.5. — A Floer datum DS on a stable annulus S ∈ C −
d with d positive boundary

punctures (ξ 1, . . . , ξ d) and one negative boundary puncture ξ 0 consists of the following choices on each

component:

(1) Strip-like ends near the punctures: we have maps εk: Z+ → S for each 1 ≤ k ≤ d converg-

ing at the end of the half-strip Z+ to ξ k , and a map ε0: Z− → S converging to ξ 0.

(2) Time shifting map: A map ρS: ∂S̄ → [1, d] which is constant near each puncture. We

write wk,S for the value on the kth end and set

w0,S =
d∑

k=1

wk,S.(6.15)

(3) Basic 1-form and Hamiltonian perturbations: A closed 1-form αS whose restriction to the

boundary vanishes and a map HS: S → H(M) such that the pullback of XHS ⊗αS under

εk agrees with X H
wk,S

◦ψwk,S ⊗ dt.
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(4) Cutoff 1-forms: A pair of 1-forms βS and γS which are multiples of αS (by smooth func-

tions), satisfying dγS ≤ 0 and such that the locus where dβS ≥ 0 is properly contained in

the support of dγS. In addition, the pullback of γS under ε0 agrees with

δS · w0,S · dt

for some non-negative constant δS, and βS and γS otherwise vanish near the ends.

(5) Almost complex structures: A map IS: S → J (M) whose pullback under εk agrees with

(ψwk,S)∗It unless k = 0 in which case it agrees with (ψ(1+δS)w0,S)∗IS1 .

If S lies on the image of a gluing map (see Equation (C.13)),

Rd−r−s+1 × Rr|1|s → ∂C −
d(6.16)

then we set βS = γS = 0, and the universal Floer data Df and D� determine the remain-
ing data for DS.

On the other hand, if S lies on the stratum (C.11), we set γS to vanish on the com-
ponent of S lying in R1

d , and use DO C to define the remaining Floer data. On the other
component (a disc with an interior and a boundary puncture), we use data conformally
equivalent to the one fixed in the discussion preceding Equation (5.9).

Definition 6.6. — A universal and conformally consistent choice of Floer data for the second

homotopy is a choice DH2 of Floer data for every integer d ≥ 1, and every representative of an element

of C −
d which varies smoothly over the compactified moduli space, such that the two natural Floer data

on any irreducible component of a singular annulus are conformally equivalent, and such that near every

boundary stratum, DH2 agrees to infinite order with the data obtained by gluing.

Consider a collection of Lagrangians L0,L1, . . . ,Ld with Ld = L0 and a sequence
of chords �x = {x1, . . . , xd} with xk ∈ X (Lk−1,Lk) for 1 ≤ k ≤ d , as well as a chord x0 ∈
X (K,K). We define the moduli space C −

d (x0; �x) to be the space of maps u: S → M whose
source is an arbitrary element of C −

d , with asymptotic conditions ψwk,S ◦ xk at the kth

incoming ends and ψ(1+δS)w0,S ◦ x0 at the outgoing end, with boundary condition ψρSLk

between ξ k−1 and ξ k if 1 ≤ k ≤ d , and ψ(1+δS)ρSK on the boundary component containing
the outgoing marked point, and which solve the Cauchy-Riemann equation

(du − XHS ⊗ αS − δS · X F◦ψ
w0,S

w0,S

⊗ βS − (X HS
1+δS

◦ψ1+δS − XHS) ⊗ γS)
0,1 = 0.(6.17)

Note that the pullback of Equation (6.17) under the ends agrees with the data used in
defining the wrapped Floer complexes, up to composition with ψwk,S for an incoming
end, and ψ(1+δS)w0,S for an outgoing end, so that the asymptotic and boundary conditions
make sense.
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Lemma 6.7. — For generic choices of Floer data DH2 , the Gromov bordification of C −
d (x0; �x)

is a compact manifold of dimension

deg(x0) − n + d −
d∑

k=1

deg(xk)

which, for a fixed sequence �x is empty for all but finitely many choices of a chord x0. Moreover, its boundary

decomposes into codimension 1 strata which are the images of natural inclusions of the moduli spaces

P 0
d (x0; �x)(6.18)

R1
(x0; y0) × R1

d(y0; �x) y0 ∈ O(6.19)

R(x0; x) × C −
d (x; �x) x ∈ X (K,K)(6.20)

C −
d1
(x0; �x1) × Rd−d1+1(x; �x2) 1 ≤ d1 < d + 1 and x ∈ X (Li,Li+j),(6.21)

where in the last type of stratum, �x1 and �x2 are as in Equation (6.11).

Proof. — On every irreducible component of a curve lying in a boundary stratum
of the abstract moduli space C −

d , Equation (6.17) agrees (up to applying the Liouville
flow for some time) with the Cauchy-Riemann equation coming from the corresponding
factor of one of the products appearing in Section C.4. From this, we deduce the Gromov
bordification of C −

d (x0; �x) is given as above.
To prove compactness, we note that ( HS

1+δS
◦ ψ1+δS − HS)dγS agrees with δSr2dγS

along the cylindrical end of M, and hence dominates δS
F◦ψw0,S

w0,S
dβS away from a com-

pact set in M which is independent of the annulus S. In particular, the hypothesis of
Lemma B.1 holds, from which compactness follows. �

Using the isomorphism (C.25), we find that each rigid element u ∈ C −
d (x0; �x) in-

duces a map H2
u on orientation spaces, and define

H2([xd], . . . , [x1]) =
∑

deg(x0)=n−d+∑
1≤k≤d deg(xk)

u∈R1
d (x0,�x)

(−1)deg(xd )+† H2
u([xd], . . . , [x1]).(6.22)

By comparing the boundary strata listed in Equations (6.18)–(6.21) with the for-
mula for the differential defining Hochschild homology, we conclude:

Lemma 6.8. — The map H2 defines a homotopy between (−1)
n(n+1)

2 f and the composition

C O ◦ O C .

Proof. — Again, we only discuss the case d = 1; the general situation differs from
this simplified one by keeping track of the appropriate Koszul signs. Assuming that there
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is only one input, there is no extraneous sign on C O ◦ O C , and a simple computation
shows that over the stratum R1

(x0; y0) × R1

1(y0; x1), the product orientation induces an
isomorphism

ox1
∼= oy0 ⊗ oy−1 ⊗ λ(L0)(6.23)

which agrees with the boundary orientation since the tangent vector ∂r to C −
1 points

outwards at this boundary point.
Over the boundary stratum P 0

1 (x0; x1) where the annulus breaks at chords y0 and
y−1, the two discs induce isomorphisms

ox1
∼= oy−1 ⊗ oy0 ⊗ λ−1(L0),

ox0
∼= oy0 ⊗ oy−1 .

The sign � with value deg(y0)deg(y−1) is the only one which does not vanish in the
definition of f , which exactly cancels with the Koszul sign to obtain the isomorphism

ox1
∼= oy0 ⊗ oy−1 ⊗ λ−1(L0).(6.24)

In order to arrive at Equation (6.23), we use the identification λ(L0) ⊗ λ(L0) ∼= λ(M)

and the orientation of M coming from the symplectic form. This gives an isomorphism
of λ(L0) with its inverse up to the Koszul sign of (−1)

n(n+1)
2 , and we conclude the desired

result. �
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Appendix A: A universal twisted complex

We shall prove Lemma 1.4 in this Appendix; the proof is entirely a matter of homolog-
ical algebra, and the fact that the categories involved originated from geometry will be
irrelevant. The reader should therefore start by consulting Equation (6.1) which shows



A GEOMETRIC CRITERION FOR GENERATING THE FUKAYA CATEGORY 229

the bar model for Y r
K ⊗B Y l

K. Keeping in mind the fact that the differential is obtained
by applying the higher products to a collection of successive morphisms, we find that the
subspace (Y r

K ⊗B Y l
K)N consisting of all expressions involving only less than N factors

forms a subcomplex; this is called the length filtration.
The assumption of Lemma 1.4 is that the identity of K lies in the image of H∗(μ).

Since the length filtration is exhaustive, there must therefore be a positive integer N such
that a chain-level representative of the identity lies in the image of the evaluation map

(Y r
K ⊗B Y l

K)N → CW∗(K,K).(A.1)

For each object L of W , let us from now on consider Y r
L as a module over W . As-

suming for simplicity that the morphism spaces are finite dimensional, we have a twisted
complex

U N
K =

(⊕

k≤N

CW∗(Lk,K)[1] ⊗ CW∗(Lk−1,Lk)[1] ⊗ · · ·

⊗ CW∗(L0,L1)[1] ⊗ Y r
L0

,DU

)
,

where the direct sum is taken over all sequences of objects of B whose length is less than
N, and the differential DU is induced by the higher products in W . The natural maps

CW∗(Ld−1,Ld)[1] ⊗ · · · ⊗ CW∗(L0,L1)[1] ⊗ Y r
L0

→ Y r
Ld

(A.2)

induced by composition in W contribute some of the terms in DU, while the remaining
ones shorten the sequence (L0, . . . ,Lk,K) by applying the higher product to a subse-
quence:

μd : CW∗(Li+d−1,Li+d)[1] ⊗ · · · ⊗ CW∗(Li,Li+1)[1] → CW∗(Li,Ld)[1].
The reader familiar with the literature on Fukaya categories of Lefschetz fibrations will
have encountered this construction of a twisted complex, e.g. in the proof of Proposi-
tion 6.2 of [14].

Note that by replacing Ld by K in Equation (A.2) we obtain a collection of maps
which define a closed morphism

U N
K → Y r

K.

Composition with this morphism defines a chain map

Hommod−W (Y r
K, U N

K ) → Hommod−W (Y r
K, Y r

K),(A.3)

where mod − W is the category of A∞ right modules over W .
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On the other hand, the Yoneda Lemma implies that we have a quasi-isomorphism

(Y r
K ⊗B Y l

K)N ∼→ Hommod−W (Y r
K, U N

K )

which fits into a homotopy commutative diagram

(Y r
K ⊗B Y l

K)N Hommod−W (Y r
K, U N

K )

CW∗(K,K) Hommod−W (Y r
K, Y r

K),

(A.4)

where the left vertical arrow comes from Equation (A.1), the right vertical arrow from
Equation (A.3), and the bottom horizontal arrow from the Yoneda embedding. Assuming
that a chain representative of the identity in HW∗(K,K) lies in the image of the left
vertical arrow, we conclude that if we pass to the cohomological category H(mod − W ),
the identity of Y r

K lies in the image of the composition

HomH(mod−W )(U N
K , Y r

K) ⊗ HomH(mod−W )(Y r
K, U N

K )

→ HomH(mod−W )(Y r
K, Y r

K).

In the cohomological category, we have factored the identity of Y r
K as the product of a

morphism from Y r
K to U N

K and one in the opposite direction; this implies that Y r
K is a sum-

mand of U N
K in the cohomological category, and hence, since idempotents lift uniquely

up to homotopy to the A∞ refinement (see Section (4b) of [17]), we conclude that Y r
K is a

summand of U N
K as objects of mod − W . Applying the Yoneda Lemma one last time we

conclude that K lies in the subcategory of W split-generated by the objects of B.

Proof of Lemma 1.4. — It remains to remove the finite dimensionality assumption
required for U N

K to be a twisted complex. To do this, still using the bar complex model
for Y r

K ⊗B Y l
K, we choose an arbitrary cycle τ in Y r

K ⊗B Y l
K whose image in CW∗(K,K)

represents the identity, and note the existence of a finite dimensional free abelian group
VL for each object L of W such that τ lies in a subcomplex of the form

⊕

L

VL ⊗ CW∗(K,L) ⊂ Y r
K ⊗B Y l

K.(A.5)

With this in mind, we construct a twisted complex
⊕

L VL ⊗ L as a subcomplex of U N
K

carrying the restriction of DU. Replacing U N
K by this twisted complex in all arguments

above, we conclude, as desired, that K lies in the subcategory of W split-generated by the
objects of B without having to assume finite dimensionality of morphism spaces. �
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Appendix B: Action, energy, and compactness

Let W be an exact symplectic manifold whose Liouville flow is inward pointing along
the boundary ∂W, and such that the complement of a compact subset of W is modelled
after the positive end of the symplectisation of a contact manifold. The only example we
shall consider is an end [R,+∞) × ∂M. Note that in the general case, there is always
a neighbourhood of ∂W which is modelled after [1,+∞) × ∂W, and we write r for the
radial coordinate on this neighbourhood.

Let LW ⊂ W be an exact Lagrangian with a primitive fW vanishing identically on
∂LW ⊂ ∂W. In all application, LW will be a union of the ends of objects of W .

Let S be a compact Riemann surface with a decomposition of the boundary

∂S = ∂nS ∪ ∂lS(B.1)

and let S be the surface obtained by removing b− interior marked points and i− boundary
marked points lying on ∂lS. Fix negative strip-like or cylindrical ends {εi}i−+b−

i=1 near all the
marked points.

Consider a collection of 1-forms αk on S such that αk ∧ α� = 0, whose pullbacks
under the strip-like ends agree with a positive multiple of dt and whose restrictions to
∂lS vanish, as well as functions Gk: S × W → [0,+∞). We think of Gk as a function
on W parametrised by the points of S, and assume that its pullback under a strip-like
or cylindrical end depends only on the t-coordinate, and that there exists a constant ε

sufficiently small so that

Gk|(S × [1,1 + ε) × ∂W) = ρkr
2(B.2)

for some positive constant ρk . In particular, associated to each end of S, there is a function
Hi on [0,1] × M or S1 × M such that

ε∗
i

(∑
Gkαk

)
= Hi ⊗ dt.

Let us fix for each interior puncture a time-1 periodic orbit yi of the Hamiltonian
flow of Hi , and for each boundary puncture a time-1 chord xi of Hi ; we respectively
write �x and �y for these sets of chords and orbits. The action of a chord xi is given by the
expression

A(xi) = −
∫ 1

0
x∗

i λ +
∫

Hi(x(t))dt + fW(xi(1)) − fW(xi(0))(B.3)

while that for an orbit is

A(yi) = −
∫ 1

0
y∗

i λ +
∫

Hi(y(t))dt.(B.4)
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In addition, choose a family JS of almost complex structures on W parametrised
by S which are of contact type near ∂W, and define MS(�x,�y) to be the moduli space of
maps

v: S → W(B.5)

mapping ∂nS to ∂W and ∂lS to L, which converge at each end to the appropriate chord
or orbit, and which solve the Cauchy-Riemann equation

(
dv −

∑
XGk

⊗ αk

)0,1 = 0.(B.6)

Note that since we are not imposing Lagrangian boundary conditions along ∂nS,
MS(�x,�y) is not a priori finite dimensional, but this will not affect any of our arguments.

We define two notions of energy for such a map v:

Egeo(v) =
∫ ∥∥∥dv −

∑
αk ⊗ XGk

∥∥∥
2 =

∫
v∗(ω) −

∑
v∗(dGk) ∧ αk,(B.7)

Etop(v) =
∫

v∗(ω) − d
(∑

v∗Gk · αk

)
= Egeo(v) −

∑∫
v∗Gk · dαk.(B.8)

Note that the expression Gkdαk gives a section on M × S of the pullback of the
space volume forms on S. As S is oriented, it therefore makes sense to say that such a
section is positive or negative. With this in mind, the next result is an essentially minor
generalisation of Lemma 7.2 of [3]:

Lemma B.1. — If
∑

A(xi) + ∑
A(yi) ≤ 0 and at every point of S

∑
(Gk − ρk)dαk ≤ 0(B.9)

then every solution to Equation (B.6) is a constant map whose image is contained in ∂LW. In particular,

the moduli space MS(�x,�y) is empty whenever there is at least one puncture.

Proof. — Equation (B.2) implies that

2
∑

v∗Gk|∂M = λ(XGk
)|∂M = 2ρk.

Applying Stokes’s theorem to the expression for topological energy, we obtain the follow-
ing expression for the topological energy:

Etop(v) =
∫

∂nS
(λ ◦ JS) ◦

(
dv −

∑
XGk

⊗ αk

)
◦ (−j) −

∫

S
ρkdαk

+
∑

A(xi) +
∑

A(yi).
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Since JS is assumed to be of contact type near ∂S, the first term is negative (see the proof
of Lemma 7.2 in [3]). Using Equation (B.8) and the hypothesis (B.9), we conclude that
Egeo(v) ≤ 0, which is impossible if v escapes from ∂W. �

In order to apply this result to the various moduli spaces defined in the paper, we
need the following action estimates:

Lemma B.2. — Every orbit in O lying away from a compact subset of M has negative action.

In addition, if L and L′ are objects of W , then every orbit in X (L,L′) which lies away from a compact

subset also has negative action.

Proof. — The pullback of λ by a Hamiltonian chord agrees with λ(XH)dt. Since H
is quadratic at infinity, λ(XH) = 2r2 away from a compact subset, which implies that the
integral in Equation(B.3) is negative if r is sufficiently large.

To prove the analogous result for orbits, we compute that

A(y) = −
∫

y∗(λ) +
∫

HS1(y, y(t))dt

= −
∫

(λ(XH) + λ(XF) − H − F) ◦ y · dt

= −
∫

(H − F + λ(XF)) ◦ y · dt.

By Assumption (5.1), H dominates F and λ(XF) away from a compact subset of M, which
implies the desired result. �

Appendix C: Moduli spaces and their orientations

In this section, we give the necessary ingredients which determine our sign conventions.
We first construct the abstract moduli spaces (and their compactifications) which control
the various maps appearing in the paper and fix our conventions for orienting them. The
last section explains how these choices (together with a spin structure on the Lagrangians)
determine orientations on the moduli spaces of maps.

The reader will find bellow listings for the codimension 1 strata of various moduli
spaces. For those familiar with the operations parametrised by these spaces, it might be
helpful to keep in mind the following convention: the ordering in a decomposition of a
stratum into products is listed in the reverse order of the composition of operations to
which they correspond.

C.1 Stasheff polyhedra controlling the A∞-structure. — We write Rd for the compactified
moduli space of abstract holomorphic discs with d + 1 boundary punctures of which d
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are equipped with positive (incoming) ends. We shall often write a representative S of a
point in this moduli space as the complement of d + 1 marked points (ξ 0, . . . , ξ d) in the
compactification S of S.

Since Rd is the quotient of the configuration space of points on ∂D2 by repara-
metrisations, we orient it by choosing a slice of this action where (ξ 0, ξ 1, ξ 2) are fixed,
and using the position of the remaining marked points as local coordinates in the order
(ξ 3, . . . , ξ d) and with orientation on each factor given by the counterclockwise orienta-
tion on the boundary of D2.

C.2 Stasheff polyhedra controlling the bimodule structure. — We define Rr|1|s to be a copy
of the moduli space of discs with r + s + 3 boundary punctures with the convention that
we have equipped 2 successive punctures (ξ−1, ξ 0) with negative ends, and the remaining
ends (ordered counterclockwise) are denoted (ξ |s, . . . , ξ |1, ξ , ξ 1, . . . , ξ r). Each element of
this moduli space has a unique representative as D2 with marked points on the bound-
ary in such a way that (ξ−1, ξ 0, ξ) are mapped to the three roots of unity. By record-
ing the position of the remaining points on the boundary of D2, we obtain coordinates
(z|s, . . . , z|1, z1, . . . , zr) on Rr|1|s which we use to fix the orientation:

dz|s ∧ · · · ∧ dz|1 ∧ dz1 ∧ · · · ∧ dzr.

The boundary strata of the Deligne Mumford compactification, which we denote
Rr|1|s, arise from breakings into a disc with one input and an element of a moduli space
of discs with 2 outputs. All such strata can be obtained as the images of natural inclusions
of the following products

Rr−m+1 × Rm|1|s 0 ≤ m < r(C.1)

Rs−�+1 × Rr|1|� 0 ≤ � < s(C.2)

Rr−m|1|s−� × R�+m+1 0 ≤ m ≤ r and 0 ≤ � ≤ s and (m, �) �= (0,0)(C.3)

Rr|1|s−�+k+1 × R�−k 0 ≤ k ≤ � ≤ s and � − k ≥ 2(C.4)

Rr−m+k+1|1|s × Rm−k 0 ≤ k ≤ m ≤ r and m − k ≥ 2.(C.5)

The first two moduli spaces correspond to one of the two outputs breaking off, while the
last three involve only inputs being involved in the breaking, and are distinguished by the
position of the breaking relative the input ξ .

C.3 Discs with one interior puncture. — We write R1 for the one element set corre-
sponding to the unique isomorphism class of discs with one interior puncture equipped
with a positive end, and one boundary puncture equipped with a negative end.

In contrast, we write R1
d for the moduli spaces of discs with d boundary punctures

all of which are equipped with positive ends and 1 interior puncture equipped with a
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negative end. We order the punctures counterclockwise along the boundary, and trivialise
R1

d by fixing an isomorphism to D2 taking the last boundary puncture to 1 and the
interior puncture to the origin, and consider the induced orientation

−dz1 ∧ · · · ∧ dzd−1,(C.6)

where z1, . . . , zd−1 are coordinates which record the positions of the remaining marked
points on the boundary S1 ⊂ D2, oriented counterclockwise.

The Deligne-Mumford compactification of R1
d can be made into a manifold with

corners. Its codimension 1 strata are given by choosing a partition d1 + d2 = d + 1 with
2 ≤ d2 ≤ d , and considering the d possible choices of natural inclusions

R1
d1

× Rd2 → R1

d .(C.7)

These inclusions come in two types:

(1) For 0 ≤ k < d1 − 1 one constructs a nodal disc by identifying the outgoing
marked point of an element of Rd2 with the k + 1st marked point of an element
of R1

d1
. The boundary marked points of the nodal discs are ordered in the

unique way which is (1) compatible with the orientation of the boundary, and
(2) such that the last marked point comes from the last marked point of R1

d1
.

(2) For 0 ≤ k ≤ d2 − 1 one constructs a nodal disc by identifying the outgoing
marked point of an element of Rd2 with the last marked point of an element of
R1

d1
and choosing the k + 1st marked point coming from Rd2 to be the terminal

element of the marked points on the nodal disc.

Remark C.1. — If we were to develop a more complete theory of algebraic invari-
ants on symplectic cohomology, we would have to consider moduli spaces of discs with 1
interior puncture together with the datum of an asymptotic marker at this marked point.
However, it is sufficient for the purposes of this paper to fix a marker which “points away”
from the last marked point on the boundary. This idea is implemented in our fixed choice
of cylindrical ends in Definition 5.6.

C.4 Annuli. — We write Cd for the abstract moduli space of holomorphic annuli
with d boundary punctures lying on one boundary component and labelled as incom-
ing and a unique outgoing boundary puncture lying on the other component. For each
positive real number r, the domain

{z ∈ C|1 ≤ |z| ≤ r}(C.8)

with the pair of marked points {1,−r} gives an element of C1. We write C −
1 for the real

line consisting of such annuli, and

C −
d ⊂ Cd(C.9)
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for the inverse image of C −
1 under the map Cd → C1 which forgets all the incoming

marked points but the last. We fix an orientation for C −
d

dr ∧ dz1 ∧ · · · ∧ dzd−1,(C.10)

where zj , as in Equation (C.6), is a coordinate recording the position of the j th incoming
marked point.

We have a Deligne-Mumford compactification C −
d which is a manifold with bound-

ary. To understand the structure at the boundary, we first note that C −
1 may be identified

with the interval [0,+∞] by using the modular parameter er as coordinate. At +∞, the
annulus breaks into two discs each carrying both an interior and a boundary puncture;
we shall label as outgoing the interior puncture on the disc carrying the incoming bound-
ary marked point, so that this stratum may be identified with the product R1 × R1

1.
At the other boundary point of C −

1 , the annulus breaks into two discs meeting at
two nodes. By convention, the nodes give rise to two outgoing marked points on the disc
carrying the incoming marked point which survives gluing, so that we may identify this
boundary stratum with R0|1|0 × R2.

Remark C.2. — While the appearance of two boundary nodes is a codimension
2 phenomenon in the Deligne-Mumford compactification of Cd , the inclusion of C −

1 in
C 1 meets this codimension 2 stratum cleanly but not transversely, so that the resulting
stratum is of codimension 1 in C −

d .

Forgetting all but the last incoming marked point (and collapsing any unstable
component) defines a map C −

d → C −
1 . The fibre over R1 × R1

1 is a boundary stratum
carrying a natural identification with

R1 × R1

d(C.11)

while the fibre over R0|1|0 × R2 is a union over all non-negative integers r and s such that
r + s ≤ d of the images of inclusion maps

Rd−r−s+1 × Rr|1|s → ∂C −
d .(C.12)

The remaining codimension 1 strata of C −
d submerse over the interior of C −

1 and
are obtained as the union over all integers 1 ≤ d1 < d of product

C −
d1

× Rd−d1+1.(C.13)

More precisely, among the boundary strata of C −
d there are d1 different ones each natu-

rally identified with the above product, corresponding geometrically to forming a nodal
curve attaching the outgoing marked point of a disc with d − d1 + 1 marked points at any
of the incoming marked points of an annulus.
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C.5 An auxiliary moduli space. — For each integer d ≥ 1, let

Pd = [0,1] ×
⋃

r+s+d1−1=d

Rd−r−s+1 × Rr|1|s/ ∼,(C.14)

where ∼ is the equivalence relation which identifies points which have the same image
under the maps (C.12). For an explicit description, note that for each integer � ≤ s, we
have a boundary stratum of Rd−r−s+1 × Rr|1|s which is a triple product

Rd−r−s+1 × Rs−�+1 × Rr|1|�(C.15)

coming from the product of the first factor with the boundary stratum of Rr|1|s given in
Equation (C.2). Note that this stratum may also be naturally identified with a boundary
stratum of the product Rd−r−�+1 × Rr|1|�. Similarly, Rd−r−s+1 × Rr|1|s and Rd−k−s+1 × Rk|1|s
have boundary strata which may be naturally identified. These identifications generate
the equivalence relation ∼.

We write

P 0
d and P 1

d(C.16)

for the boundary strata of Pd coming from the boundary of the interval [0,1]. Their
complement in the boundary of Pd is covered by the images of natural inclusions

Pd1 × Rd−d1+1 → ∂Pd(C.17)

for every integer 1 ≤ d1 < d and 1 ≤ k ≤ d1 obtained by attaching a disc with d − d1 + 1
inputs at the kth input of an element Pd1 .

C.6 Orienting the moduli spaces of maps. — Given y ∈ O, there is a unique homotopy
class of trivialisations of the pullback of TM to S1 which is compatible with the cho-
sen trivialisation of 	n

CT∗M. Given a cylindrical end [1,+∞) × S1, the linearisation of
Equation (2.9) with respect to such a trivialisation exponentially converges at the end to
an operator of the form

Y �→ ∂sY − Jt∂tY − A(+∞, t)Y

such that Jt∂t − A(+∞, t) is self-adjoint (see [8]).
Let us therefore consider the plane C equipped with a negative cylindrical end

ε: Z− → C

(s, t) �→ e−s+2π
√−1t

and extensions of Jt and A(−∞, t) to a family of (linear) complex structures on Cn and
endomorphisms of Cn parametrised by C. In particular, we obtain an operator

Dy: W1,2(C,Cn) → L2(C,Cn).(C.18)
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Definition C.3. — The orientation line oy is the determinant line det(Dy).

For a time-1 chord x with endpoints on graded Lagrangian Li and Lj , there is an
analogously defined orientation line ox. The reader is referred to Section (11l) of [17] for
the definitions.

There is a general theory, starting with [8], studied in the Lagrangian case in [10],
and phrased in [17] using precisely the language adopted here, for relating such orien-
tation lines with orientations of moduli spaces of punctured holomorphic curves with
asymptotic conditions converging to the selected Hamiltonian chords and orbits. Con-
sider a moduli space M of compact Riemann surfaces with boundary S with i− + i+
interior marked point and b− + b+ boundary marked points: ± represents the respec-
tive numbers of marked points equipped with positive or negative ends. Let S denote the
complement of the marked points, and fix a smooth map from ∂S to the space of exact
graded Lagrangians on M which is locally constant near the ends. In particular, we have
two graded Lagrangians associated to each boundary marked point in S coming from
the two local components of ∂S.

Let {H−
k }i−+b−

k=1 and {H+
k }i++b+

k=1 be periodic time-dependent Hamiltonians, and con-
sider collections �y+ = {y+

i }i+
i=1 and �y− = {y−

i }i−
i=1 of time-1 orbits for the Hamiltonians H+

i

and H−
i as well as time-1 orbits �x+ = {x+

i }b+
i=i++1 and �x− = {x−

i }b−
i=i−+1 with endpoints on

the two Lagrangians associated to each boundary marked point.
Choosing a family IS of almost complex structures on M parametrised by points

in S, we define M(�x−,�y−;�x+,�y+) to be the moduli space of maps with appropriate
Lagrangian boundary conditions and asymptotic limits, which solve a family of equations

∂S ≡ (du − YS)
0,1 = 0(C.19)

for each surface S ∈ M where YS is a 1-form on S valued in the space of Hamiltonian
vector fields on M whose pullback under an appropriate strip-like end near the punctures
agrees with XH−

i
⊗ dt near the negative punctures and XH+

i
⊗ dt near the positive ones.

The main result we need is:

Lemma C.4. — Let C̄1, . . . , C̄k be the components of the boundary of S̄, and ej denote the

number of negative ends of C̄j . If we fix a marked point zj ∈ Cj mapping to a Lagrangian Lj then,

assuming the moduli space M(�x,�y; �x+,�y+) is regular at a point u, we have a canonical isomorphism

λ(M(�x−,�y−;�x+,�y+)) ∼= λ(M) ⊗
⊗

j

(
λ(T|u(zj)Lj)

⊗1−ej ⊗
⊗

x±
i ∈C̄j

o∓
x±

i

)

⊗
⊗

y±i

o∓
y±i

,

where λ stands for the top exterior power of the tangent space.
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Proof. — This a minor generalisation of Proposition 11.13 in [17] which is stated in
the absence of interior punctures, and for a moduli space of solutions for a fixed confor-
mal structure. Writing S̃ for the surface obtained by filling interior punctures, we obtained
an operator D∂ S̃

by gluing the linearisation D∂S
of ∂S to the various operators Dy. The

gluing theorem implies that we have an isomorphism

det(D∂ S̃
) ∼= det(D∂S

) ⊗
⊗

y±i

o±
y±i

.

The result now follows directly by applying Proposition 11.13 in [17]. �

Applying this result to the various moduli spaces appearing in this paper, and using
the Koszul rules to reorder factors at our convenience, we obtain:

Corollary C.5. — Given a pair of orbits y0, y1 ∈ O, a sequence �x = (x1, . . . , xd) of chords

with xk starting at Lk−1 and ending at Lk , and a chord x0 with endpoints on a Lagrangian K, there are

canonical up to homotopy isomorphisms

λ(M̃(y0; y1)) ⊗ oy1
∼= oy0(C.20)

λ(R̃(x0; x1)) ⊗ ox1
∼= ox0(C.21)

λ(R1(x0; y1)) ⊗ oy1
∼= ox0(C.22)

λ(Rd(x0; �x)) ⊗ oxd
⊗ · · · ⊗ ox2 ⊗ ox1

∼= λ(Rd) ⊗ ox0(C.23)

λ(R1
d(y0; �x)) ⊗ oxd

⊗ · · · ⊗ ox2 ⊗ ox1 ⊗ λ−1(L0) ∼= λ(R1
d) ⊗ oy0(C.24)

λ(Cd(x0; �x)) ⊗ oxd
⊗ · · · ⊗ ox2 ⊗ ox1 ⊗ λ−1(L0) ∼= λ(Cd) ⊗ ox0 .(C.25)

In addition, if x−1, x0, and x are respectively chords in X (K,Lr), X (L|s,K), and X (L|0,L0), while

�x = (x1, . . . , xr) and �x | = (x|s, . . . , x|1) are sequences of chords respectively in X (L|k+1,L|k) and

X (Lk,Lk+1), we have an isomorphism

λ(Rr|1|s(x−1, x0; �x |, x,�x r) ⊗ oxr
⊗ · · · ⊗ ox1 ⊗ ox ⊗ ox|1 ⊗ · · · ⊗ ox|s ⊗ λ(L0)(C.26)

∼= λ(Rr|1|s) ⊗ ox−1 ⊗ ox0 .

Remark C.6. — To obtain operations from Equations (C.20) and (C.21, one must
in addition choose a trivialisation of the R action on the moduli spaces M̃(y0; y1) and
R̃(x0; x1). In both cases, we choose ∂s as the vector field inducing the trivialisation.
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