Dans ce travail, nous étudions les groupes de Chow-Witt. Ces groupes ont été introduits par J. Barge et F. Morel dans le but de comprendre dans quelle situation un -module projectif de rang égal à la dimension de est isomorphe à un module projectif plus simple . Dans un premier temps, nous montrons que ces groupes satisfont à peu de choses près les propriétés fonctorielles des groupes de Chow classiques. Nous définissons ensuite pour tout -module localement libre de rang (constant) sur un schéma régulier de dimension une classe d’Euler qui est un raffinement de la classe de Chern maximale classique . Cette classe d’Euler satisfait elle aussi de bonnes propriétés fonctorielles. Nous obtenons en particulier que si est un projectif de rang sur un anneau régulier de dimension supérieure ou égale à tel que alors . Nous calculons dans un second temps les groupes de Chow-Witt maximaux d’un anneau régulier de dimension et d’une -algèbre régulière de dimension quelconque. Il découle immédiatement de ces calculs que si est un -module projectif de rang égal à la dimension de l’anneau on a si et seulement si . Finalement nous examinons les liens entre les groupes de Chow-Witt et les groupes des classes d’Euler introduits par S. Bhatwadekar et R. Sridharan.
In this work we study the Chow-Witt groups. These groups were defined by J. Barge et F. Morel in order to understand when a projective module of top rank over a ring has a free factor of rank one, i.e., is isomorphic to . We show first that these groups satisfy the same functorial properties as the classical Chow groups. Then we define for each locally free -module of (constant) rank over a regular scheme an Euler class which is a refinement of the usual top Chern class . The Euler classes satisfy also good fonctorial properties. In particular, we get if is a projective module of rank over a regular ring of dimension such that . Next we compute the top Chow-Witt group of a regular ring of dimension and the top Chow-Witt group of a regular -algebra of finite dimension. For such , we get that if is a projective module of rank equal to the dimension of the ring then if and only if . Finally, we examine the links between the Chow-Witt groups and the Euler class groups defined by S. Bhatwadekar and R. Sridharan.
Mot clés : groupes de Chow-Witt, classe d’Euler, fibrés vectoriels
Keywords: Chow-Witt groups, Euler class, vector bundles
@book{MSMF_2008_2_113__1_0, author = {Fasel, Jean}, title = {Groupes de {Chow-Witt}}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, publisher = {Soci\'et\'e math\'ematique de France}, number = {113}, year = {2008}, doi = {10.24033/msmf.425}, mrnumber = {2542148}, zbl = {1190.14001}, language = {fr}, url = {http://www.numdam.org/item/MSMF_2008_2_113__1_0/} }
Fasel, Jean. Groupes de Chow-Witt. Mémoires de la Société Mathématique de France, Série 2, no. 113 (2008), 205 p. doi : 10.24033/msmf.425. http://numdam.org/item/MSMF_2008_2_113__1_0/
[Ba1] Derived Witt groups of a scheme, Journal of pure and applied alg. 141, no. 2 (1999), 101-129. | MR | Zbl
,[Ba2] Triangular Witt Groups. Part I : the 12-term exact sequence, K-theory 19 (2000), 311-363. | MR | Zbl
,[Ba3] Triangular Witt Groups. Part II : from usual to derived, Math. Zeitschrift 236, no. 2 (2001), 351-382. | MR | Zbl
,[Ba4] Products of degenerate quadratic forms, Compositio Math. 141 (2005), 1374-1404. | MR | Zbl
,[BG] Koszul complexes and symmetric forms over the punctured affine space, Proceedings of the London Mathematical Society 91, no 2 (2005), 273-299. | MR | Zbl
, ,[BW] A Gersten-Witt spectral sequence for regular schemes, Annales Scientifiques de l’ENS. 35, no. 1 (2002), 127-152. | MR | EuDML | Zbl | Numdam
, ,[BM] Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels, C. R. Acad. Sci. Paris 330 (2000), 287-290. | MR
, ,[BO] Fibrés algébriques sur une surface réelle, Comment. Math. Helv. 62 (1987), 616-629. | MR | EuDML | Zbl
, ,[BOU] Algèbre, Eléments de mathématiques, chapitre 10, Masson (1980), Paris. | MR | Zbl
,[BS1] Projective generation of curves in polynomial extensions of an affine domain and a question of Nori, Invent. Math. 133 (1998), 161-192. | MR | Zbl
, ,[BS2] Zero cycles and the Euler class groups of smooth real affine variety, Invent. Math. 136 (1999), 287-322. | MR | Zbl
, ,[BS3] The Euler class group of a noetherian ring, Compositio Math. 122 (2000), 183-222. | MR | Zbl
, ,[BH] Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993. | MR | Zbl
, ,[Fa] The Chow-Witt ring, Doc. Math. 12 (2007), 275–312. | MR | EuDML | Zbl
,[Fu] Intersection theory, Ergebnisse der Math. und ihrer Grenzgebiete (1984), Springer. | MR | Zbl
,[Gi1] On Witt-groups with support, Thèse, 2001.
,[Gi2] A transfer morphism for Witt groups, J. reine angew. Math. 564 (2003), 215-233. | MR | Zbl
,[Gi3] A graded Gersten-Witt complex for schemes with dualizing complex and the Chow group, J. Pure Appl. Algebra 208 (2007), no. 2, 391–419. | MR | Zbl
,[Gi4] The general dévissage theorem for Witt groups of schemes Arch. Math. (Basel) 88 (2007), no. 4, 333–343. | MR | Zbl
,[Gro1] Eléments de géométrie algébrique (EGA) II, Publ. math IHES 32 (1967).
,[Gro2] Eléments de géométrie algébrique (EGA) III, Publ. math IHES 32 (1967).
,[Gro3] Eléments de géométrie algébrique (EGA) IV, Publ. math IHES 32 (1967). | Zbl | Numdam
,[Ha1] Residues and duality, Lecture Notes in Math. 20 (1966), Springer. | MR | EuDML
,[Ha2] R Hartshorne, Algebraic geometry, Graduate text in Math. 52 (1977), Springer. | MR
[Kn] On algebraic curves over real closed fields I, Math. Zeitschrift 150 (1976), 49-70. | MR | EuDML | Zbl
,[Ku] Kähler differentials, Adv. lectures in Math. (1986), Vieweg und Sohn. | MR | Zbl
,[Ma] An algebraic introduction to K-theory, Encyclopedia of Math. and its Applic. 87 (2002). | MR | Zbl
,[Mat] Commutative ring theory, Cambridge Studies in Adv. Math., Cambridge University Press (1986), Cambridge.
,[Mi] Algebraic K-theory and quadratic forms, Invent. Math. 9 (1969-1970), 318-344. | MR | EuDML
,[MH] Symmetric bilinear forms, Ergebnisse der Math. und ihrer Grenzgebiete 73 (1973), Springer. | MR | Zbl
, ,[Mo] -homotopy classification of vector bundles over smooth affine schemes, preprint available at http ://www.mathematik.uni-muenchen.de/ morel/preprint.html
,[Mu1] A survey of obstruction theory for projective modules of top rank, Contemp. Math. 243 (1999), 153-174. | MR | Zbl
,[Mu2] Zero cycles and projective modules, Ann. Math. 140 (1994), 405-434. | MR | Zbl
,[Pl] The conjectures of Eisenbud and Evans, Amer. Journal of Math. 105 (1983), 1417-1433. | MR | Zbl
,[QSS] Quadratic and hermitian forms in additive and abelian categories, Journal of Algebra 59, no. 2 (1979), 264-290. | MR | Zbl
, , ,[Ro] Chow groups with coefficients, Doc. Math. 1 (1996), 319-193. | MR | EuDML | Zbl
,[Sc] Quadratic and hermitian forms, Grundlehren der math. Wissen. 270 (1985), Springer. | MR | Zbl
,[Sch] Wittringhomologie, Thèse, 1997.
,[Se] Corps locaux, Public. institut math. université Nancago VIII (1968), Hermann. | MR
,[Sw] A cancellation theorem for projective modules in the metastable range, Invent. Math. 122 (1985), 113-153. | MR | EuDML
,[Vo] Motivic cohomology with coefficients, Public. Hautes Etudes Sci. 98 (2003), 59-104. | MR | EuDML | Zbl | Numdam
,[We] An introduction to homological algebra, Cambridge Studies in Adv. Math., Cambridge University Press (1994), Cambridge. | MR | Zbl
,Cité par Sources :