Over the past five years, multi-marginal optimal transport, a generalization of the well known optimal transport problem of Monge and Kantorovich, has begun to attract considerable attention, due in part to a wide variety of emerging applications. Here, we survey this problem, addressing fundamental theoretical questions including the uniqueness and structure of solutions. The answers to these questions uncover a surprising divergence from the classical two marginal setting, and reflect a delicate dependence on the cost function, which we then illustrate with a series of examples. We go on to describe some applications of the multi-marginal optimal transport problem, focusing primarily on matching in economics and density functional theory in physics.
DOI : 10.1051/m2an/2015020
Mots-clés : Multi-marginal optimal transport, Monge−Kantorovich problem, structure of solutions, uniqueness of solutions, matching, purity, density functional theory, strictly correlated electrons
@article{M2AN_2015__49_6_1771_0, author = {Pass, Brendan}, title = {Multi-marginal optimal transport: {Theory} and applications}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1771--1790}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015020}, mrnumber = {3423275}, zbl = {1330.49050}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2015020/} }
TY - JOUR AU - Pass, Brendan TI - Multi-marginal optimal transport: Theory and applications JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1771 EP - 1790 VL - 49 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2015020/ DO - 10.1051/m2an/2015020 LA - en ID - M2AN_2015__49_6_1771_0 ER -
%0 Journal Article %A Pass, Brendan %T Multi-marginal optimal transport: Theory and applications %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1771-1790 %V 49 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2015020/ %R 10.1051/m2an/2015020 %G en %F M2AN_2015__49_6_1771_0
Pass, Brendan. Multi-marginal optimal transport: Theory and applications. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1771-1790. doi : 10.1051/m2an/2015020. http://www.numdam.org/articles/10.1051/m2an/2015020/
Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43 (2011) 904–924. | DOI | MR | Zbl
and ,L. Ambroso and N.Gigli, A users guide to optimal transport. In Modelling and Optimisation of Flows on Networks. In vol. 2062 of Lect. Notes Math. Springer (2013) 1–155. | MR
M. Beiglbock and C. Griessler, An optimality principle with applications in optimal transport. Preprint arXiv:1404.7054.
Model independent bounds for option prices: a mass transport approach. Finance Stoch. 17 (2013) 477–501. | DOI | MR | Zbl
, and ,M. Beiglbock and N. Juillet, On a problem of optimal transport under marginal martingale constraints. To appear in Ann. Probab. (2015). | MR
J. Bigot and T. Klein, Consistent estimation of a population barycenter in the Wasserstein space. Proc. of the International Conference Statistics and its Interaction with Other Disciplines (2013) 153–157.
Decomposition polaire et rearrangement monotone des champs de vecteurs. C.R. Acad. Sci. Pair. Ser. I Math. 305 (1987) 805–808. | MR | Zbl
,The dual least action problem for an ideal, incompressible fluid. Arch. Ration. Mech. Anal. 122 (1993) 323–351. | DOI | MR | Zbl
,Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85 (2012) 062502. | DOI
, and ,L. Caffarelli, Allocation maps with general cost functions. In Partial Differential Equations and Applications. Vol. 177 of Lect. Notes Pure Appl. Math. Dekker, New York (1996) 29–35. | MR | Zbl
Free boundaries in optimal transport and Monge-Ampère obstacle problems. Ann. Math. 171 (2010) 673–730. | DOI | MR | Zbl
and ,On a class of multidimensional optimal transportation problems. J. Convex Anal. 10 (2003) 517–529. | MR | Zbl
,Matching for teams. Econ. Theory 42 (2010) 397–418. | DOI | MR | Zbl
and ,Optimal transportation for the determinant. ESAIM: COCV 14 (2008) 678–698. | Numdam | MR | Zbl
and ,G. Carlier, A. Oberman and E. Oudet, Numerical methods for matching for teams and Wasserstein barycenters. To appear in ESAIM: M2AN (2015). Doi:. | DOI | Numdam | MR
Numerical methods for a Kohn-Sham density functional model based on optimal transport. J. Chem. Theory. Comput. 10 (2014) 4360–4368. | DOI
, and ,P.A. Chiappori, A. Galichon and B. Salanie, The roommate problem is more stable than you think. CESifo working paper Serie (2014).
Hedonic price equilibria, stable matching and optimal transport; equivalence, topology and uniqueness. Econ. Theory. 42 (2010) 317–354. | DOI | MR | Zbl
, and ,Equality between Monge and Kantorovich multimarginal problems with Coulomb cost . Ann. Mat. Pura Appl. 194 (2015) 307–320. | DOI | MR | Zbl
and ,Multimarginal optimal transport maps for 1-dimensional repulsive costs. Canad. J. Math. 67 (2015) 350–368. | DOI | MR | Zbl
, and ,Density functional theory and optimal transportation with coulomb cost. Comm. Pure Appl. Math. 66 (2013) 548–599. | DOI | MR | Zbl
, and ,C. Cotar, G. Friesecke and C. Klüppelberg, Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional. Preprint. | MR
Infinite body optimal transport with Coulomb cost. Calc. Var. Partial Differ. Eqs. 54 (2015) 717–742. | DOI | MR | Zbl
, and ,J. Dahl, A maximal principal for pointwise energies of quadratic Wasserstein minimal networks. Preprint arXiv:1011.0236v3.
Robust hedging and martingale optimal transport in continuous time. Probab. Theory Relat. Fields 160 (2014) 391–427. | DOI | MR | Zbl
and ,Robust hedging with proportional transaction costs. Finance Stoch. 18 (2014) 327–347. | DOI | MR | Zbl
and ,An optimal matching problem. ESAIM: COCV 11 (2005) 57–71. | Numdam | MR | Zbl
,An academic response to basel 3.5. Risks 2 (2014) 25–48. | DOI
, , , and ,L.C. Evans,Partial differential equations and Monge−Kantorovich mass transfer. In vol. 26 of Current Dev. Math. Int. Press (1999) 65–126. | MR | Zbl
The optimal partial transport problem. Arch. Ration. Mech. Anal. 195 (2010) 533–560. | DOI | MR | Zbl
,N-density representability and the optimal transport limit of the Hohenberg-Kohn functional. J. Chem. Phys. 139 (2013) 164–109. | DOI
, , , and .Variational representations for N-cyclically monotone vector fields. Pacific J. Math. 269 (2014) 323–340. | DOI | MR | Zbl
and ,A stochastic control approach to non-arbitrage bounds given marginals, with an application to Lookback options. Ann. Appl. Probab. 24 (2014) 312–336. | DOI | MR | Zbl
, and ,W. Gangbo, Habilitation thesis, Universite de Metz, available at: http://people.math.gatech.edu/˜gangbo/publications/habilitation.pdf (1995).
The geometry of optimal transportation. Acta Math. 177 (1996) 113–161. | DOI | MR | Zbl
and ,Optimal maps for the multidimensional Monge−Kantorovich problem. Comm. Pure Appl. Math. 51 (1998) 23–45. | DOI | MR | Zbl
and ,Symmetric Monge−Kantorovich problems and polar decompositions of vector fields. Geom. Funct. Anal. 24 1129–1166. | DOI | MR | Zbl
and ,A self-dual polar factorization for vector fields. Comm. Pure. Appl. Math. 66 (2013) 905–933. | DOI | MR | Zbl
and ,Decoupling of DeGiorgi-type systems via multi-marginal optimal transport. Comm. Partial Differ. Eqs. 6 (2014) 1032–1047. | DOI | MR | Zbl
and .Remarks on multi-marginal symmetric Monge-Kantorovich problems. Discrete Contin. Dyn. Syst. 34 (2014) 1465–1480. | DOI | MR | Zbl
and ,Probleme de Monge pour probabilities. C.R. Math. Acad. Sci. Paris 334 (2002) 793–795. | DOI | MR | Zbl
,P. Henry-Labordere, X. Tan and N. Touzi, An Explicit Martingale Version of the One-dimensional Brenier’s Theorem with Full Marginals Constraint. Preprint available at: https://www.ceremade.dauphine.fr/˜tan/MartingaleBrenierII.pdf. | MR
P. Henry-Labordere and N. Touzi, An explicit martingale version of Brenier’s theorem. Preprint arXiv:1302.4854.
Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67 (1984) 399–432. | DOI | MR | Zbl
,Continuity, curvature, and the general covariance of optimal transportation. J. Eur. Math. Soc. 12 (2010) 1009–1040. | DOI | MR | Zbl
and ,Y.-H. Kim and B. Pass, Multi-marginal optimal transport on a Riemannian manifold. Preprint arXiv:1303.6251. | MR
A general condition for Monge solutions in the multi-marginal optimal transport problem. SIAM J. Math. Anal. 46 (2014) 1538–1550. | DOI | MR | Zbl
and ,J. Kitagawa and B. Pass, The multi-marginal optimal partial transport problem. Preprint arXiv:1401.7255. | MR
On a generalization of cyclic monotonicity and distances among random vectors. Linear Algebra Appl. 199 (1994) 363–371. | DOI | MR | Zbl
and ,Abstract cyclical monotonicity and Monge solutions for the general Monge−Kantorovich problem. Set-Valued Anal. 7 (1999) 7–32. | DOI | MR | Zbl
,An inequality for rearrangements. Amer. Math. Monthly 60 (1953) 176–179. | DOI | MR | Zbl
,X-Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177 (2005) 151–183. | DOI | MR | Zbl
, and ,Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589–608. | DOI | MR | Zbl
,A glimpse into the differential topology and geometry of optimal transport. Discrete Contin. Dyn. Syst. 34 (2014) 1605–1621. | DOI | MR | Zbl
,Rectifiability of optimal transportation plans. Canad. J. Math. 64 (2012) 924–934. | DOI | MR | Zbl
, and ,Towards the Kantorovich dual solution for strictly correlated electrons in atoms and molecules. Phys. Rev. B 87 (2013) 125106. | DOI
and ,A. Moameni, Invariance properties of the Monge−Kantorovich mass transport problem. Preprint . | arXiv | MR
Multi-marginal monge−kantorovich transport problems: A characterization of solutions. C. R. Math. Acad. Sci. Paris 352 (2014) 993–998. | DOI | MR | Zbl
,Maximum submatrix traces for positive definite matrices. SIAM J. Matrix Ana. Appl. 14 (1993) 390–39. | DOI | MR | Zbl
and ,R.G. Parr and W. Yang, Density functional theory of atoms and molecules. Oxford University Press, Oxford (1995).
B. Pass, Structural results on optimal transportation plans. Ph.D. thesis, University of Toronto (2011). Available at: http://www.ualberta.ca/˜pass/thesis.pdf. | MR
Uniqueness and Monge solutions in the multimarginal optimal transportation problem. SIAM J. Math. Anal. 43 (2011) 2758–2775. | DOI | MR | Zbl
,On the local structure of optimal measures in the multi-marginal optimal transportation problem. Calc. Var. Partial Differ. Equ. 43 (2012) 529–536. | DOI | MR | Zbl
,On a class of optimal transportation problems with infinitely many marginals. SIAM J. Math. Anal. 45 (2013) 2557–2575. | DOI | MR | Zbl
,Remarks on the semi-classical Hohenberg-Kohn functional. Nonlinearity 26 (2013) 2731–2744. | DOI | MR | Zbl
,Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions. Discrete Contin. Dyn. Syst. 34 (2014) 1623–1639. | DOI | MR | Zbl
,Optimal transportation with infinitely many marginals. J. Funct. Anal. 264 (2013) 947–963. | DOI | MR | Zbl
.Sharp bounds for sums of dependent risks. J. Appl. Probab. 50 (2013) 42–53. | DOI | MR | Zbl
and ,J. Rabin, G. Peyre, J. Delon and M. Bernot, Wasserstein barycenter and its application to texture mixing. In Scale Space and Variational Methods in Computer Vision (2012) 435–446.
L. Rüschendorf and L. Uckelmann, On Optimal Multivariate Couplings. In Proc. of Prague 1996 Conference on Marginal Problems. Kluwer Acad. Publ. (1997) 261–274. | MR | Zbl
Strong-interaction limit of density-functional theory. Phys. Rev. A 60 (1999) 4387–4395. | DOI
,Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities. Phys. Rev. A 75 (2007) 042511. | DOI
, and ,C. Villani, Topics in Optimal Transportation. In vol. 58 of Grad. Stud. Math. American Mathematical Society, Providence (2003). | MR | Zbl
C. Villani, Optimal Transport: Old and New. In vol. 338 of Grundlehren Math. Wiss. Springer, New York (2009). | MR | Zbl
Cité par Sources :