Among -valued triples of random vectors having fixed marginal probability laws, what is the best way to jointly draw in such a way that the simplex generated by has maximal average volume? Motivated by this simple question, we study optimal transportation problems with several marginals when the objective function is the determinant or its absolute value.
Mots clés : optimal transportation, multi-marginals problems, determinant, disintegrations
@article{COCV_2008__14_4_678_0, author = {Carlier, Guillaume and Nazaret, Bruno}, title = {Optimal transportation for the determinant}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {678--698}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008006}, mrnumber = {2451790}, zbl = {1160.49015}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008006/} }
TY - JOUR AU - Carlier, Guillaume AU - Nazaret, Bruno TI - Optimal transportation for the determinant JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 678 EP - 698 VL - 14 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008006/ DO - 10.1051/cocv:2008006 LA - en ID - COCV_2008__14_4_678_0 ER -
%0 Journal Article %A Carlier, Guillaume %A Nazaret, Bruno %T Optimal transportation for the determinant %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 678-698 %V 14 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008006/ %R 10.1051/cocv:2008006 %G en %F COCV_2008__14_4_678_0
Carlier, Guillaume; Nazaret, Bruno. Optimal transportation for the determinant. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 678-698. doi : 10.1051/cocv:2008006. http://www.numdam.org/articles/10.1051/cocv:2008006/
[1] Polar factorization and monotone rearrangements of vector valued functions. Comm. Pure Appl. Math. 44 (1991) 375-417. | MR | Zbl
,[2] Direct methods in the calculus of variations, Applied Mathematical Sciences 78. Springer-Verlag, Berlin (1989). | MR | Zbl
,[3] A duality theorem for some non-convex functions of matrices. Ric. Mat. 55 (2006) 1-12. | MR | Zbl
,[4] Convex Analysis and Variational Problems, in Classics in Mathematics, Society for Industrial and Applied Mathematics, Philadelphia (1999). | MR | Zbl
and ,[5] Optimal maps for the multidimensional Monge-Kantorovich problem. Comm. Pure Appl. Math. 51 (1998) 23-45. | MR | Zbl
and ,[6] The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. | MR | Zbl
and ,[7] Mass Transportation Problems. Vol. I: Theory; Vol. II: Applications. Springer-Verlag (1998). | MR | Zbl
and ,[8] Topics in optimal transportation, Graduate Studies in Mathematics 58. American Mathematical Society, Providence, RI (2003). | MR | Zbl
,Cité par Sources :