A mixed formulation of a sharp interface model of stokes flow with moving contact lines
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 969-1009.

Two-phase fluid flows on substrates (i.e. wetting phenomena) are important in many industrial processes, such as micro-fluidics and coating flows. These flows include additional physical effects that occur near moving (three-phase) contact lines. We present a new 2-D variational (saddle-point) formulation of a Stokesian fluid with surface tension that interacts with a rigid substrate. The model is derived by an Onsager type principle using shape differential calculus (at the sharp-interface, front-tracking level) and allows for moving contact lines and contact angle hysteresis and pinning through a variational inequality. Moreover, the formulation can be extended to include non-linear contact line motion models. We prove the well-posedness of the time semi-discrete system and fully discrete method using appropriate choices of finite element spaces. A formal energy law is derived for the semi-discrete and fully discrete formulations and preliminary error estimates are also given. Simulation results are presented for a droplet in multiple configurations to illustrate the method.

DOI : 10.1051/m2an/2013130
Classification : 65N30, 65M12, 76D45, 76M30
Mots clés : mixed method, Stokes equations, surface tension, contact line motion, contact line pinning, variational inequality, well-posedness
@article{M2AN_2014__48_4_969_0,
     author = {Walker, Shawn W.},
     title = {A mixed formulation of a sharp interface model of stokes flow with moving contact lines},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {969--1009},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {4},
     year = {2014},
     doi = {10.1051/m2an/2013130},
     mrnumber = {3264343},
     zbl = {1299.76064},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2013130/}
}
TY  - JOUR
AU  - Walker, Shawn W.
TI  - A mixed formulation of a sharp interface model of stokes flow with moving contact lines
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 969
EP  - 1009
VL  - 48
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2013130/
DO  - 10.1051/m2an/2013130
LA  - en
ID  - M2AN_2014__48_4_969_0
ER  - 
%0 Journal Article
%A Walker, Shawn W.
%T A mixed formulation of a sharp interface model of stokes flow with moving contact lines
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 969-1009
%V 48
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2013130/
%R 10.1051/m2an/2013130
%G en
%F M2AN_2014__48_4_969_0
Walker, Shawn W. A mixed formulation of a sharp interface model of stokes flow with moving contact lines. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 969-1009. doi : 10.1051/m2an/2013130. http://www.numdam.org/articles/10.1051/m2an/2013130/

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, vol. 140 of Pure Appl. Math. Series, 2nd edn. Elsevier (2003). | MR | Zbl

[2] V.I. Arnold, Lectures on Partial Differential Equations. Springer (2006). | MR | Zbl

[3] J.-P. Aubin, Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by gelerkin's and finite difference methods. Ann. Scuola Norm. Sup. Pisa 21 (1967) 599-637. | Numdam | MR | Zbl

[4] T.A. Baer, R.A. Cairncross, P.R. Schunk, R.R. Rao and P.A. Sackinger, A finite element method for free surface flows of incompressible fluids in three dimensions. Part II. Dynamic wetting lines. Int. J. Numer. Methods Fluids 33 (2000) 405-427. | Zbl

[5] E. Bänsch, Finite element discretization of the navier-stokes equations with a free capillary surface. Numer. Math. 88 (2001) 203-235. | MR | Zbl

[6] E. Bänsch and K. Deckelnick, Optimal error estimates for the stokes and navier-stokes equations with slip-boundary condition. ESAIM: M2AN 33 (1999) 923-938. | Numdam | MR | Zbl

[7] E. Bänsch and B. Höhn, Numerical treatment of the navier-stokes equations with slip boundary condition. SIAM J. Sci. Comput. 21 (2000) 2144-2162. | MR | Zbl

[8] F.B. Belgacem, The Mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | MR | Zbl

[9] T.D. Blake, The physics of moving wetting lines. J. Colloid Interface Sci. 299 (2006) 1-13.

[10] T.D. Blake and Y.D. Shikhmurzaev, Dynamic wetting by liquids of different viscosity. J. Colloid Interface Sci. 253 (2002) 196-202.

[11] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press (2001). | MR | Zbl

[12] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002). | MR | Zbl

[13] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl

[14] F. Brezzi, W.W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities: Part II. Mixed methods. Num. Math. 31 (1978) 1-16. | MR | Zbl

[15] C.E. Brown, T.D. Jones and E.L. Neustadter, Interfacial flow during immiscible displacement. J. Colloid Interface Sci. 76 (1980) 582-586.

[16] R. Burridge and J.B. Keller, Peeling, slipping and cracking-some one-dimensional free-boundary problems in mechanics. SIAM Review 20 (1978) 31-61. | MR | Zbl

[17] C.H.A. Cheng, D. Coutand and S. Shkoller, Navier-stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39 (2007) 742-800. | MR | Zbl

[18] S.K. Cho, H. Moon and C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Systems 12 (2003) 70-80.

[19] P. Ciarlet, On korns inequality. Chin. Ann. Math. Ser. B 31 (2010) 607-618. | MR | Zbl

[20] P. Clément, Approximation by finite element functions using local regularization. R.A.I.R.O. Analyse Numérique 9 (1975) 77-84. | Numdam | Zbl

[21] P.-P. Cortet, M. Ciccotti and L. Vanel, Imaging the stickslip peeling of an adhesive tape under a constant load. J. Stat. Mech. 2007 (2007) P03005.

[22] J. Cui, X. Chen, F. Wang, X. Gong and Z. Yu, Study of liquid droplets impact on dry inclined surface. Asia-Pacific J. Chem. Eng. 4 (2009) 643-648.

[23] M.C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Vol. 4 of Adv. Des. Control. SIAM (2001). | MR | Zbl

[24] T. Deng, K. Varanasi, M. Hsu, N. Bhate, C. Keimel, J. Stein and M. Blohm, Non-wetting of impinging droplets on textured surface. Appl. Phys. Lett. 94 (2009) 133109.

[25] S. Dodds, M.S. Carvalho and S. Kumar, The dynamics of three-dimensional liquid bridges with pinned and moving contact lines. J. Fluid Mech. 707 (2012) 521-540. | Zbl

[26] G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer, New York (1976). | MR | Zbl

[27] C. Eck, M. Fontelos, G. Grün, F. Klingbeil and O. Vantzos, On a phase-field model for electrowetting. Interf. Free Bound. 11 (2009) 259-290. | MR | Zbl

[28] J. Eggers and R. Evans, Comment on dynamic wetting by liquids of different viscosity, by t.d. blake and y.d. shikhmurzaev. J. Colloid Interf. Sci. 280 (2004) 537-538.

[29] R. Eley and L. Schwartz, Interaction of rheology, geometry, and process in coating flow. J. Coat. Technol. 74 (2002) 43-53. DOI: 10.1007/BF02697974. | MR

[30] M.S. Engelman, R.L. Sani and P.M. Gresho, The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow. Int. J. Numer. Methods Fluids 2 (1982) 225-238. | MR | Zbl

[31] L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (1998). | MR | Zbl

[32] R.S. Falk and S.W. Walker, A mixed finite element method for ewod that directly computes the position of the moving interface. SIAM J. Numer. Anal. 51 (2013) 1016-1040. | MR | Zbl

[33] E. Fermi, Thermodynamics. Dover (1956). | Zbl

[34] M. Fontelos, G. Grün and S. Jörres, On a phase-field model for electrowetting and other electrokinetic phenomena. SIAM J. Math. Anal. 43 (2011) 527-563. | MR | Zbl

[35] G.P. Galdi,An introduction to the mathematical theory of the Navier-Stokes equations. I. Linearized steady problems. Vol. 38 of Springer Tracts in Natural Philosophy. Springer-Verlag, New York (1994). | MR | Zbl

[36] J.-F. Gerbeau and T. Lelièvre, Generalized navier boundary condition and geometric conservation law for surface tension. Comput. Methods Appl. Mech. Eng. 198 (2009) 644-656. | MR | Zbl

[37] C.M. Groh and M.A. Kelmanson, Multiple-timescale asymptotic analysis of transient coating flows. Phys. Fluids 21 (2009) 091702. | Zbl

[38] B. Guo and C. Schwab, Analytic regularity of stokes flow on polygonal domains in countably weighted sobolev spaces. J. Comput. Appl. Math. 190 (2006) 487-519. | MR | Zbl

[39] K.K. Haller, Y. Ventikos, D. Poulikakos and P. Monkewitz, Computational study of high-speed liquid droplet impact. J. Appl. Phys. 92 (2002) 2821-2828.

[40] J. Haslinger and R.A.E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation. Vol. 7 of Adv. Des. Control. SIAM (2003). | MR | Zbl

[41] C. Huh and L.E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interf. Sci. 35 (1971) 85-101.

[42] Y. Hyon, D.Y. Kwak and C. Liu, Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete Contin. Dyn. Syst. Ser. A 26 (2010) 1291-1304. | MR

[43] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562-580. | MR | Zbl

[44] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems, Vol. 1. Springer (1972).

[45] F. Mugele and J.-C. Baret, Electrowetting: from basics to applications. J. Phys.: Condensed Matter 17 (2005) R705-R774.

[46] J. Nam and M.S. Carvalho, Mid-gap invasion in two-layer slot coating. J. Fluid Mech. 631 (2009) 397-417. | Zbl

[47] J. Nitsche, Ein kriterium für die quasi-optimalität des ritzschen verfahrens. Numer. Math. 11 (1968) 346-348. | MR | Zbl

[48] R.H. Nochetto, A.J. Salgado and S.W. Walker, A diffuse interface model for electrowettng with moving contact lines. Submitted (2012). | Zbl

[49] R.H. Nochetto and S.W. Walker, A hybrid variational front tracking-level set mesh generator for problems exhibiting large deformations and topological changes. J. Comput. Phys. 229 (2010) 6243-6269. | MR | Zbl

[50] L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37 (1931) 405-426. | Zbl

[51] L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38 (1931) 2265-2279. | Zbl

[52] M. Orlt and A.-M. Sändig, Boundary Value Problems And Integral Equations In Nonsmooth Domains, chapter Regularity Of Viscous Navier-Stokes Flows In Nonsmooth Domains. Marcel Dekker, New York (1995) 185-201. | MR | Zbl

[53] R.F. Probstein, Physicochemical Hydrodynamics: An Introduction, 2nd edn. John Wiley and Sons, Inc., New York (1994).

[54] T. Qian, X.-P. Wang and P. Sheng, Generalized navier boundary condition for the moving contact line. Commun. Math. Sci. 1 (2003) 333-341. | MR | Zbl

[55] T. Qian, X.-P. Wang and P. Sheng, A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564 (2006) 333-360. | MR | Zbl

[56] W. Ren and W.E., Boundary conditions for the moving contact line problem. Phys. Fluids 19 (2007) 022101. | Zbl

[57] W. Ren, D. Hu and W.E., Continuum models for the contact line problem. Phys. Fluids 22 (2010) 102103.

[58] R.V. Roy, A.J. Roberts and M.E. Simpson, A lubrication model of coating flows over a curved substrate in space. J. Fluid Mech. 454 (2002) 235-261. | MR | Zbl

[59] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483-493. | MR | Zbl

[60] Y.D. Shikhmurzaev, Capillary Flows with Forming Interfaces. Chapman & Hall/CRC, Boca Raton, FL, 1st edition (2007). | MR | Zbl

[61] Y.D. Shikhmurzaev and T.D. Blake, Response to the comment on [J. Colloid Interface Sci. 253 (2002) 196] by j. eggers and r. evans. J. Colloid Interf. Sci. 280 (2004) 539-541.

[62] D.N. Sibley, N. Savva and S. Kalliadasis, Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system. Phys. Fluids 24 (2012).

[63] L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177-201. | Numdam | MR | Zbl

[64] J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization. Springer Ser. Comput. Math. Springer-Verlag (1992). | MR | Zbl

[65] E. Stein, R. De Borst and T.J. Hughes, Encyclopedia of Computational Mechanics. 1 - Fundamentals. Wiley, 1st edition (2004). | MR | Zbl

[66] R. Temam, Navier-Stokes Equations. Theory and numerical analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI (2001). | MR | Zbl

[67] E. Vandre, M.S. Carvalho and S. Kumar, Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707 (2012) 496-520. | Zbl

[68] W. Velte and P. Villaggio, On the detachment of an elastic body bonded to a rigid support. J. Elasticity 27 (1992) 133-142. DOI: 10.1007/BF00041646. | MR | Zbl

[69] R. Verfürth, Finite element approximation of incompressible navier-stokes equations with slip boundary condition. Numer. Math. 50 (1987) 697-721. | MR | Zbl

[70] S.W. Walker, A. Bonito and R.H. Nochetto, Mixed finite element method for electrowetting on dielectric with contact line pinning. Interf. Free Bound. 12 (2010) 85-119. | MR | Zbl

[71] S.W. Walker and B. Shapiro, Modeling the fluid dynamics of electrowetting on dielectric (ewod). J. Microelectromech. Systems 15 (2006) 986-1000.

[72] S.W. Walker, B. Shapiro and R.H. Nochetto, Electrowetting with contact line pinning: Computational modeling and comparisons with experiments. Phys. Fluids 21 (2009) 102103. | Zbl

[73] S.J. Weinstein and K.J. Ruschak, Coating flows. Ann. Rev. Fluid Mech. 36 (2004) 29-53. | Zbl

Cité par Sources :