@article{M2AN_1999__33_5_923_0, author = {B\"ansch, Eberhard and Deckelnick, Klaus}, title = {Optimal error estimates for the {Stokes} and {Navier-Stokes} equations with slip-boundary condition}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {923--938}, publisher = {EDP-Sciences}, volume = {33}, number = {5}, year = {1999}, mrnumber = {1726716}, zbl = {0948.76035}, language = {en}, url = {http://www.numdam.org/item/M2AN_1999__33_5_923_0/} }
TY - JOUR AU - Bänsch, Eberhard AU - Deckelnick, Klaus TI - Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 923 EP - 938 VL - 33 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_5_923_0/ LA - en ID - M2AN_1999__33_5_923_0 ER -
%0 Journal Article %A Bänsch, Eberhard %A Deckelnick, Klaus %T Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 923-938 %V 33 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_1999__33_5_923_0/ %G en %F M2AN_1999__33_5_923_0
Bänsch, Eberhard; Deckelnick, Klaus. Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 5, pp. 923-938. http://www.numdam.org/item/M2AN_1999__33_5_923_0/
[1] Local Mesh Refinement in 2 and 3 Dimensions. Impact Comp. Sci. Eng. 3 (1991) 181-191. | MR | Zbl
,[2] Numerical treatment of the Navier-Stokes equations with slip-boundary conditions. Preprint 9/ 1998, Universität Freiburg; SIAM J. Sci. Comp. (Submitted). | MR | Zbl
and ,[3] An Introduction to Fluid Dynamics. University Press, Cambridge (1970). | MR | Zbl
,[4] Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 212-234. | MR | Zbl
,[5] Mixed and hybrid finite element methods. Springer, New York (1991). | MR | Zbl
and ,[6] Numerical methods for the Navier-Stokes equations. Application to the simulation of compressible and incompressible flows. Comput. Phys. Rep. 6 (1987) 73-188. | MR
, and ,[7] The finite element method for elliptic problems. North-Holland, Amsterdam (1977). | MR | Zbl
,[8] Nonlinear Functional Analysis. Springer, Berlin (1985). | MR | Zbl
,[9] Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer, Berlin (1986). | MR | Zbl
and ,[10] Thermocapillary free boundaries in crystal growth. J. Fluid Mech. 169 (1986) 1-26. | Zbl
and ,[11] Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system. Internat. J. Numer. Methods Fluids 4 (1984) 207-229. | Zbl
and ,[12] Variational Crimes in a Finite Element Discretization of 3D Stokes Equations with Nonstandard Boundary Conditions. Preprint MBI-97-4, University of Magdeburg (1997). | MR | Zbl
,[13] Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562-580. | MR | Zbl
,[14] On Korn's second inequality. RAIRO Anal. Numér. 15 (1981) 237-248. | Numdam | MR | Zbl
,[15] Die Babuška-Brezzi Bedingung für das Taylor-Hood-Element. Diploma thesis, University of Bonn, Germany (1990).
,[16] Study of Coating Flow by the Finite Element Method. J. Comput. Phys. 42 (1981) 53-76. | Zbl
and ,[17] Surface-Tension-Driven Flow in Crystal Growth Melts, in Crystal Growth, Properties and Applications 11. Springer, Berlin (1988).
,[18] On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. Steklov Inst. Math. 125 (1973) 186-199. | MR | Zbl
and ,[19] A combined conjugate gradient-multigrid algorithm for the numerical solutin of the Stokes problem. IMA J. Numer. Anal. 4 (1984) 441-455. | MR | Zbl
,[20] Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions. Math. Modelling Numer. Anal. 19 (1985) 461-475. | Numdam | MR | Zbl
,[21] Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50 (1987) 697-721. | MR | Zbl
,[22] Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II. Numer. Math. 59 (1991) 615-636. | MR | Zbl
,