We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation on an interval. The discretization is based on the equation's gradient flow structure with respect to the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition. We also present results from numerical experiments.
Mots-clés : lagrangian discretization, nonlinear Fokker-Planck equation, gradient flow, Wasserstein metric
@article{M2AN_2014__48_3_697_0, author = {Matthes, Daniel and Osberger, Horst}, title = {Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {697--726}, publisher = {EDP-Sciences}, volume = {48}, number = {3}, year = {2014}, doi = {10.1051/m2an/2013126}, mrnumber = {3177862}, zbl = {1293.65119}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2013126/} }
TY - JOUR AU - Matthes, Daniel AU - Osberger, Horst TI - Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 697 EP - 726 VL - 48 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2013126/ DO - 10.1051/m2an/2013126 LA - en ID - M2AN_2014__48_3_697_0 ER -
%0 Journal Article %A Matthes, Daniel %A Osberger, Horst %T Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 697-726 %V 48 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2013126/ %R 10.1051/m2an/2013126 %G en %F M2AN_2014__48_3_697_0
Matthes, Daniel; Osberger, Horst. Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 3, pp. 697-726. doi : 10.1051/m2an/2013126. http://www.numdam.org/articles/10.1051/m2an/2013126/
[1] Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Basel (2005). | MR | Zbl
, and ,[2] Stability of flows associated to gradient vector fields and convergence of iterated transport maps. Manuscripta Math. 121 (2006) 1-50. | MR | Zbl
, and ,[3] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393. | MR | Zbl
and ,[4] Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46 (2008) 691-721. | MR | Zbl
, and ,[5] Self-similar numerical solutions of the porous-medium equation using moving mesh methods. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999) 1047-1077. | MR | Zbl
, , and ,[6] A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models 3 (2010) 59-83. | MR | Zbl
, and ,[7] Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput. 31 (2009/2010) 4305-4329. | MR | Zbl
and ,[8] A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinet. Relat. Models 3 (2010) 123-142. | MR | Zbl
and ,[9] A gradient flow scheme for nonlinear fourth order equations. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 935-959. | MR | Zbl
, and ,[10] Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal. 37 (2005) 737-751. | MR | Zbl
, and ,[11] Minimal surfaces and functions of bounded variation, vol. 80, Monographs in Mathematics. Birkhäuser Verlag, Basel (1984). | MR | Zbl
,[12] Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal. 43 (2006) 2590-2606 (electronic). | MR | Zbl
and ,[13] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. | Zbl
, and ,[14] Approximation of parabolic equations using the Wasserstein metric. ESAIM: M2AN 33 (1999) 837-852. | Numdam | Zbl
and ,[15] Gradientenfluß-basierte diskretisierung parabolischer gleichungen, diplomarbeit, Universität Bonn (2002).
,[16] A numerical procedure for the porous media equation. Hyperbolic partial differential equations, II. Comput. Math. Appl. 11 (1985) 315-319. | Zbl
and ,[17] A convexity principle for interacting gases. Adv. Math. 128 (1997) 153-179. | Zbl
,[18] The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174. | Zbl
,[19] Discretizing the porous medium equation based on its gradient flow structure - a consistency paradox, Technical report 150, Sonderforschungsbereich 611, May 2004.Available online at http://sfb611.iam.uni-bonn.de/uploads/150-komplett.pdf.
,[20] Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 395-431. | Numdam | MR | Zbl
and ,[21] Deterministic diffusion of particles. Commun. Pure Appl. Math. 43 (1990) 697-733. | MR | Zbl
,[22] Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. 31 (2011) 1427-1451. | MR | Zbl
,[23] Topics in optimal transportation, in vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). | MR | Zbl
,[24] Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. ESAIM: M2AN 44 (2010) 133-166. | Numdam | MR
and ,Cité par Sources :