@article{M2AN_1999__33_4_837_0, author = {Kinderlehrer, David and Walkington, Noel J.}, title = {Approximation of parabolic equations using the {Wasserstein} metric}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {837--852}, publisher = {EDP-Sciences}, volume = {33}, number = {4}, year = {1999}, mrnumber = {1726488}, zbl = {0936.65121}, language = {en}, url = {http://www.numdam.org/item/M2AN_1999__33_4_837_0/} }
TY - JOUR AU - Kinderlehrer, David AU - Walkington, Noel J. TI - Approximation of parabolic equations using the Wasserstein metric JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 837 EP - 852 VL - 33 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_4_837_0/ LA - en ID - M2AN_1999__33_4_837_0 ER -
%0 Journal Article %A Kinderlehrer, David %A Walkington, Noel J. %T Approximation of parabolic equations using the Wasserstein metric %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 837-852 %V 33 %N 4 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_1999__33_4_837_0/ %G en %F M2AN_1999__33_4_837_0
Kinderlehrer, David; Walkington, Noel J. Approximation of parabolic equations using the Wasserstein metric. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 4, pp. 837-852. http://www.numdam.org/item/M2AN_1999__33_4_837_0/
[1] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Preprint (1998). | Zbl
and ,[2] Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampere transport problem. SIAM J. AppL Math. 58 (1998) 1450-1461. | MR | Zbl
and ,[3] Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991)375-417. | MR | Zbl
,[4] Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, Cambridge (1988). | MR | Zbl
,[5] Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys. 107 (1998) 10177-10184. | Zbl
and ,[6] Sur la distance de deux lois de probabilité. C.R. Acad. Sci. 244 (1957) 689-692. | MR | Zbl
,[7] Optimal maps for the multidimensional Monge-Kantorovich problem. CPAM 51 (1998) 23-45. | MR | Zbl
and ,[8] The geometry of optimal transportation. Acta Math, 177 (1996) 113-161. | MR | Zbl
and ,[9] The variational formulation of the Fokker-Planck équation. SIAM J. Math. Anal. 29 (1998) 1-17. | MR | Zbl
, and ,[10] Dynamics of the Fokker-Planck equation. Phase Transitions (to appear).
, and ,[11] Analysis, Vol. 14 of Graduate Studies in Mathematics. AMS (1997). | MR | Zbl
and ,[12] Dynamics of labyrinthine pattern formation in magnetic fluids. Arch. Rational Mech. Anal. 141 (1998) 63-103. | MR | Zbl
,[13] Stochastic Processes in Physics and Chemistry. North-Holland (1981). | MR | Zbl
,