This paper is concerned with the computation of 3D vertex singularities of anisotropic elastic fields with Dirichlet boundary conditions, focusing on the derivation of error estimates for a finite element method on graded meshes. The singularities are described by eigenpairs of a corresponding operator pencil on spherical polygonal domains. The main idea is to introduce a modified quadratic variational boundary eigenvalue problem which consists of two self-adjoint, positive definite sesquilinear forms and a skew-Hermitean form. This eigenvalue problem is discretized by a finite element method on graded meshes. Based on regularity results for the eigensolutions estimates for the finite element error are derived both for the eigenvalues and the eigensolutions. Finally, some numerical results are presented.
Mots-clés : quadratic eigenvalue problems, linear elasticity, 3D vertex singularities, finite element methods, error estimates
@article{M2AN_2002__36_6_1043_0, author = {Apel, Thomas and S\"andig, Anna-Margarete and Solov'ev, Sergey I.}, title = {Computation of {3D} vertex singularities for linear elasticity : error estimates for a finite element method on graded meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1043--1070}, publisher = {EDP-Sciences}, volume = {36}, number = {6}, year = {2002}, doi = {10.1051/m2an:2003005}, zbl = {1137.65426}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2003005/} }
TY - JOUR AU - Apel, Thomas AU - Sändig, Anna-Margarete AU - Solov'ev, Sergey I. TI - Computation of 3D vertex singularities for linear elasticity : error estimates for a finite element method on graded meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 1043 EP - 1070 VL - 36 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2003005/ DO - 10.1051/m2an:2003005 LA - en ID - M2AN_2002__36_6_1043_0 ER -
%0 Journal Article %A Apel, Thomas %A Sändig, Anna-Margarete %A Solov'ev, Sergey I. %T Computation of 3D vertex singularities for linear elasticity : error estimates for a finite element method on graded meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 1043-1070 %V 36 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2003005/ %R 10.1051/m2an:2003005 %G en %F M2AN_2002__36_6_1043_0
Apel, Thomas; Sändig, Anna-Margarete; Solov'ev, Sergey I. Computation of 3D vertex singularities for linear elasticity : error estimates for a finite element method on graded meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 1043-1070. doi : 10.1051/m2an:2003005. http://www.numdam.org/articles/10.1051/m2an:2003005/
[1] LAPACK Users' Guide. SIAM, Philadelphia, PA, third edition (1999). | Zbl
, , , , , , , , , and ,[2] Anisotropic finite elements: Local estimates and applications. Teubner, Stuttgart, Adv. Numer. Math. (1999). Habilitationsschrift. | MR | Zbl
,[3] Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures. Comput. Methods Appl. Mech. Engrg. (to appear), Preprint SFB393/01-25, TU Chemnitz (2001). | Zbl
, and ,[4] Interpolation remainder theory from Taylor expansions on triangles. Numer. Math. 25 (1976) 401-408. | Zbl
and ,[5] Singularities of elastic stresses and of harmonic functions at conical notches or inclusions. Internat. J. Solids Structures 10 (1974) 957-964.
and ,[6] Singularities of rotationally symmetric solutions of boundary value problems for the Lamé equations. ZAMM 71 (1990) 423-431. | Zbl
and ,[7] Numerical computation of deflating subspaces of embedded Hamiltonian pencils. SIAM J. Matrix Anal. Appl. (to appear), Preprint SFB393/99-15, TU Chemnitz (1999).
, , and ,[8] General edge asymptotics of solutions of second order elliptic boundary value problems I, II. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 109-155, 157-184. | Zbl
and ,[9] Elliptic boundary value problems on corner domains - smoothness and asymptotics of solutions. Lecture Notes in Math. 1341, Springer, Berlin (1988). | Zbl
,[10] Singularities of corner problems and problems of corner singularities, in: Actes du 30ème Congrés d'Analyse Numérique: CANum '98 (Arles, 1998), Soc. Math. Appl. Indust., Paris (1999) 19-40. | Zbl
,[11] “Simple” corner-edge asymptotics. Internet publication, http://www.maths.univ-rennes1.fr/ dauge/publis/corneredge.pdf (2000).
,[12] SuperLU Users' Guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory (1999).
, and ,[13] Efficient computation of order and mode of corner singularities in 3d-elasticity. Internat. J. Numer. Methods Engrg. 52 (2001) 805-827. | Zbl
, and ,[14] Asymptotical expansion in non-Lipschitzian domains: a numerical approach using -fem. Numer. Linear Algebra Appl. (to appear). | MR | Zbl
and ,[15] Elliptic problems in nonsmooth domains. Pitman, Boston-London-Melbourne, Monographs and Studies in Mathematics 21 (1985). | Zbl
,[16] Bibliotheken zur Entwicklung paralleler Algorithmen. Preprint SPC95_20, TU Chemnitz-Zwickau (1995). Updated version of SPC94_4 and SPC93_1.
, , , and ,[17] On the discrete approximation of eigenvalue problems with holomorphic parameter dependence. Proc. Roy. Soc. Edinburgh Sect. A 78 (1977) 1-29. | Zbl
and ,[18] Approximation of operator functions and convergence of approximate eigenvalues. Tr. Vychisl. Tsentra Tartu. Gosudarst. Univ. 24 (1971) 3-143. In Russian.
,[19] Asymptotic error estimates for approximate characteristic value of holomorphic Fredholm operator functions. Zh. Vychisl. Mat. Mat. Fiz. 11 (1971) 559-568. In Russian. | Zbl
,[20] Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I. Numer. Funct. Anal. Optim. 17 (1996) 365-387. | Zbl
,[21] Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II: Convergence rate. Numer. Funct. Anal. Optim. 17 (1996) 389-408. | Zbl
,[22] Boundary value problems for elliptic equations on domains with conical or angular points. Tr. Mosk. Mat. Obs. 16 (1967) 209-292. In Russian. | Zbl
,[23] Elliptic Boundary Value Problems in Domains with Point Singularities. American Mathematical Society (1997).
, and ,[24] Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. American Mathematical Society (2001). | Zbl
, and ,[25] On holomorphic operator functions of several complex variables. Funct. Anal. Appl. 3 (1969) 85-86. In Russian. English transl. in Funct. Anal. Appl. 3 (1969) 330-331. | Zbl
and ,[26] On Fredholm operator depending holomorphically on the parameters. Tr. Seminara po funk. anal. Voronezh univ. (1970) 63-85. | Zbl
and ,[27] Computation of 3D-singularities in elasticity, in: Boundary value problems and integral equations in nonsmooth domains, M. Costabel, M. Dauge and S. Nicaise Eds. New York, Lecture Notes in Pure and Appl. Math. 167 (1995) 161-170. Marcel Dekker. Proceedings of a conference at CIRM, Luminy, France, May 3-7 (1993). | Zbl
,[28] Computation of singular solutions in elliptic problems and elasticity. Masson, Paris (1987). | MR | Zbl
and ,[29] ARPACK user's guide. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia, PA, Software Environ. Tools 6 (1998). | Zbl
, and ,[30] On holomorphic operator functions. Dokl. Akad. Nauk 119 (1958) 1099-1102. In Russian. | Zbl
,[31] Introduction to spectral theory of polynomial operator pencils. American Mathematical Society, Providence (1988). | MR | Zbl
,[32] The multiplicity of the characteristic number of an analytic operator function. Mat. Issled. 5 (1970) 129-147. In Russian. | Zbl
and ,[33] -estimates of solutions of elliptic boundary value problems in domains with edges. Tr. Mosk. Mat. Obs. 37 (1978) 49-93. In Russian. English transl. in Trans. Moscow Math. Soc. 1 (1980) 49-97. | Zbl
and ,[34] The first boundary value problem for classical equations of mathematical physics in domains with piecewise smooth boundaries, part I, II. Z. Anal. Anwendungen 2 (1983) 335-359, 523-551. In Russian. | Zbl
and ,[35] Über die Asymptotik der Lösung elliptischer Randwertaufgaben in der Umgebung von Kanten. Math. Nachr. 138 (1988) 27-53. | Zbl
and ,[36] On the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains. Ann. Global Anal. Geom. 9 (1991) 253-303. | Zbl
and ,[37] On the behaviour of solutions to the dirichlet problem for second order elliptic equations near edges and polyhedral vertices with critical angles. Z. Anal. Anwendungen 13 (1994) 19-47. | Zbl
and ,[38] Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/ Hamiltonian pencils. SIAM J. Sci. Comput. 22 (2001) 1905-1925. | Zbl
and ,[39] Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en et séries de Fourier en . RAIRO Anal. Numér. 16 (1982) 405-461. | Numdam | Zbl
and ,[40] Elliptic problems in domains with piecewise smooth boundary. Walter de Gruyter, Berlin, Exposition. Math. 13 (1994). | MR | Zbl
and ,[41] Regularity of the solutions of elliptic systems in polyhedral domains. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 411-429. | Zbl
,[42] Grafik-Ausgabe vom Parallelrechner für 2D-Gebiete. Preprint SPC94_24, TU Chemnitz-Zwickau (1994).
,[43] Résolution numérique de problèmes elliptiques dans des domaines avec coins. Ph.D. thesis, Université de Rennes, France (1978).
,[44] Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. I Math. 286 (1978) A791-A794. | Zbl
,[45] Singularities of non-rotationally symmetric solutions of boundary value problems for the Lamé equations in a three dimensional domain with conical points. Breitenbrunn, Analysis on manifolds with singularities (1990), Teubner-Texte zur Mathematik, Band 131 (1992) 181-193. | Zbl
and ,[46] On three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differential Equations 9 (1993) 323-337. | Zbl
, and ,[47] On numerical methods for flat crack propagation. IMF-Preprint 99-2, Universität Karlsruhe (1999).
, , and ,[48] The root subspaces of operators that depend analytically on a parameter. Mat. Issled. 3 (1968) 117-125. In Russian. | Zbl
,[49] Convergence rate of approximate methods in an eigenvalue problem with a parameter entering nonlinearly. Zh. Vychisl. Mat. Mat. Fiz. 14 (1974) 1393-1408. In Russian. | Zbl
and ,Cité par Sources :