@article{M2AN_2000__34_4_749_0, author = {Canc\`es, Eric and Le Bris, Claude}, title = {On the convergence of {SCF} algorithms for the {Hartree-Fock} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {749--774}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {4}, year = {2000}, mrnumber = {1784484}, zbl = {1090.65548}, language = {en}, url = {http://www.numdam.org/item/M2AN_2000__34_4_749_0/} }
TY - JOUR AU - Cancès, Eric AU - Le Bris, Claude TI - On the convergence of SCF algorithms for the Hartree-Fock equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 749 EP - 774 VL - 34 IS - 4 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_2000__34_4_749_0/ LA - en ID - M2AN_2000__34_4_749_0 ER -
%0 Journal Article %A Cancès, Eric %A Le Bris, Claude %T On the convergence of SCF algorithms for the Hartree-Fock equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 749-774 %V 34 %N 4 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_2000__34_4_749_0/ %G en %F M2AN_2000__34_4_749_0
Cancès, Eric; Le Bris, Claude. On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 4, pp. 749-774. http://www.numdam.org/item/M2AN_2000__34_4_749_0/
[1] Convergent iterative methods for the Hartree eigenproblem. RAIRO Modél. Math. Anal. Numér. 28 (1994) 575-610. | Numdam | MR | Zbl
and ,[2] There are no unfilled shells in unrestricted Hartree-Fock theory. Phys. Rev. Lett. 72 (1994) 2981-2983.
, , and ,[3] General properties of the Hartree-Fock problem demonstrated on the frontier orbital model. II. Analysis of the customary iterative procedure. Theoret. Chim. Acta 36 (1975) 163-180.
and ,[4] A general relation between the intrinsic convergence properties of SCF Hartree-Fock calculations and the stability conditions of their solutions. J. Chem. Phys. 79 (1983) 3421-3423.
and ,[5] Optimization of SCF LCAO wave functions. Mol. Phys. 19 (1970) 55-63.
,[6] The calculation of atomic structures. Wiley (1957). | MR | Zbl
,[7] Ab initio molecular orbital theory. Wiley (1986).
, , and ,[8] A new direct minimization algorithm for Hartree-Fock calculations. Progr. Theoret. Phys. 54 (1975) 1266-1281.
and ,[9] On convergence difficulties in the iterative Hartree-Fock procedure. J. Chem. Phys. 55 (1971) 2408-2413.
and ,[10] Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math. 57 (1977) 93-105. | MR | Zbl
,[11] Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29 (1984) 3018-3028.
,[12] The Hartree-Fock theory for Coulomb Systems. Comm. Math. Phys. 53 (1977) 185-194. | MR
and ,[13] Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109 (1987) 33-97. | MR | Zbl
,[14] The density matrix in self-consistent field theory. I. Iterative construction of the density matrix. Proc. Roy. Soc. London Ser. A 235 (1956) 496-509. | MR | Zbl
,[15] Methods of molecular Quantum Mechanics. Academic Press (1992).
,[16] Hartree-Fock stability and symmetry breaking, in Self Consistent Field Theory and Application. Elsevier (1990) 1-45.
,[17] Improved SCF convergence acceleration. J. Comput. Chem. 3 (1982) 556-560.
,[18] Methods of modern mathematical physics. I. Functional analysis. Academic Press (1980). | MR | Zbl
and ,[19] Methods of modern mathematical physics. IV. Analysis of operators. Academic Press (1978). | MR | Zbl
and ,[20] New developments in molecular orbital theory. Rev. Modern Phys. 23 (1951) 69-89. | Zbl
,[21] A "level-shifting" method for converging closed shell Hartree-Fock wave functions. Int. J. Quantum Chem. 7 (1973) 699-705.
and ,[22] Do you have SCF stability and convergence problems?, in Computational Advances in Organic Chemistry, Kluwer Academic (1991) 167-185.
and ,[23] Self-consistent molecular orbital methods. XVI. Numerically stable direct energy minimization procedures for solution of Hartree-Fock equations. J. Chem. Phys. 65 (1976) 265-271.
and ,[24] The existence and cure of intrinsic divergence in closed shell SCF calculations. J. Chem. Phys. 75 (1981) 3426-3432.
,[25] Intrinsic convergence in closed-shell SCF calculations. A general criterion. J. Chem. Phys. 75 (1981) 5416-5422.
,[26] A dynamical damping scheme for converging molecular SCF calculations. Chem. Phys. Lett. 62 (1979) 550-554.
and ,