@article{M2AN_1994__28_5_575_0, author = {Auchmuty, G. and Jia, Wenyao}, title = {Convergent iterative methods for the {Hartree} eigenproblem}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {575--610}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {5}, year = {1994}, mrnumber = {1295588}, zbl = {0821.65047}, language = {en}, url = {http://www.numdam.org/item/M2AN_1994__28_5_575_0/} }
TY - JOUR AU - Auchmuty, G. AU - Jia, Wenyao TI - Convergent iterative methods for the Hartree eigenproblem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 575 EP - 610 VL - 28 IS - 5 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1994__28_5_575_0/ LA - en ID - M2AN_1994__28_5_575_0 ER -
%0 Journal Article %A Auchmuty, G. %A Jia, Wenyao %T Convergent iterative methods for the Hartree eigenproblem %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 575-610 %V 28 %N 5 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1994__28_5_575_0/ %G en %F M2AN_1994__28_5_575_0
Auchmuty, G.; Jia, Wenyao. Convergent iterative methods for the Hartree eigenproblem. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 5, pp. 575-610. http://www.numdam.org/item/M2AN_1994__28_5_575_0/
[1] Applied Nonlinear Analysis, Wiley Interscience, New York. | MR | Zbl
, , 1984,[2] Duality for Non-convex Variational Principles, J. Diff. Equations, 10, 80-145 | MR | Zbl
, 1983,[3] Duality algorithms for nonconvex vanational principles, Numer. Funct. Anal. and Optim., 10, 211-264. | MR | Zbl
, 1989,[4] Variational Methods in Mathematical Physics, Springer-Verlag. | MR | Zbl
, , 1992,[5] Analyse Convexe et Problèmes Variationnels, Dunod, Paris | MR | Zbl
, , 1974,[6] Infinite-dimensional Optimization and Convexity, The Univ. of Chicago Press | MR | Zbl
, , 1983,[7] Nächerungsmethode zur hösung der quantemechanischen Mehrkörper-problems, Z. Phys., 61, 126-148. | JFM
, 1930,[8] personal communication.
,[9] Hartree-Fock theory in Nuclear Physics, RAIRO Modél. Math. Anal. Numér., 20, 571-637 | Numdam | MR | Zbl
, , 1987,[10] The wave mechamcs of an atom with a non-Coulomb central field Part I. Theory and methods, Proc. Comb. Phil. Soc., 24, 89-312. | JFM
, 1928,[11] The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York. | MR | Zbl
, 1985,[12] Quantum Mechanics, Pergamon, 2nd ed. | Zbl
, , 1965,[13] On solutions of the Hartree-Fock problem for atoms and molecules, J. Chem. Phys., 61, 735-736. | MR
, , 1974,[14] The Hartree-Fock theory for Coulomb Systems, Comm. Math. Phys., 53, 185-194. | MR
, , 1977,[15] Hartree-Fock equations for Coulomb Systems, Comm. Math. Phys., 109, 33-97. | MR | Zbl
, 1987,[16] On Hartree and Hartree-Fock equations in atomic and nuclear physics, Comp. Meth. Applied Mech. & Eng., 75, 53-60. | MR | Zbl
, 1989,[17] A Numerical Method for the Hartree Equation of the Helium Atom, Calcolo, 23, 185-207. | MR | Zbl
, 1986,[18] Self-consistent Calculations of Nuclear Properties with Phenomenological Effective Forces, Ann. Rev. Nucl. Part. Sci.,28, 523-596.
, , 1978,[19] Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York. | MR | Zbl
, , 1980,[20] General Theorem on Bifurcation and its Application to the Hartree Equation of the Helium Atom, J. Math. Phys., 11, 2505-2512. | MR
, 1970,[21] A note on Hartree's Method, Phys. Rev., 35, 210-211.
, 1930,[22] Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York. | MR | Zbl
, 1986,[23] Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New York | MR | Zbl
, 1985,