@article{M2AN_2000__34_2_275_0, author = {Bona, Jerry L. and Wu, Jiahong}, title = {Zero-dissipation limit for nonlinear waves}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {275--301}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {2}, year = {2000}, mrnumber = {1765660}, zbl = {0953.76006}, language = {en}, url = {http://www.numdam.org/item/M2AN_2000__34_2_275_0/} }
TY - JOUR AU - Bona, Jerry L. AU - Wu, Jiahong TI - Zero-dissipation limit for nonlinear waves JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 275 EP - 301 VL - 34 IS - 2 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_2000__34_2_275_0/ LA - en ID - M2AN_2000__34_2_275_0 ER -
Bona, Jerry L.; Wu, Jiahong. Zero-dissipation limit for nonlinear waves. ESAIM: Modélisation mathématique et analyse numérique, Special Issue for R. Temam's 60th birthday, Tome 34 (2000) no. 2, pp. 275-301. http://www.numdam.org/item/M2AN_2000__34_2_275_0/
[1] Non-local models for nonlinear, dispersive waves. Physica D 40 (1989) 360-392. | MR | Zbl
, , and ,[2] Decay of solutions of some nonlinear wave equations. J. Differential Equations 81 (1989) 1-49. | MR | Zbl
, and ,[3] Model equations for long waves in nonlinear Systems. Philos. Trans. Royal Soc. London Ser. A 272 (1972) 47-78. | MR | Zbl
, and ,[4] Asymptotic behavior in time of some equations generalizing the Korteweg-de Vries equation. Bull. Polish Acad. Sci. 32 (1984) 275-282. | MR | Zbl
,[5] On solitary waves and their role in the evolution of long waves. In Applications of Nonlinear Analysis in the Physical Sciences, H. Amann, N. Bazley and K. Kirchgâssner Eds, Pitman, London (1983) 183=205. | Zbl
,[6] A mathematical model for long waves generated by a wave-maker in nonlinear dispersive Systems. Proc. Cambridge Philos. Soc. 73 (1973) 391-405. | MR | Zbl
and ,[7] Fourier splitting and the dissipation of nonlinear waves. Proc. Royal Soc. Edinburgh 129A (1999) 477-502. | MR | Zbl
, and ,[8] The effect of dissipation on solutions of the generalized KdV equation. J. Comp. Appl. Math. 74 (1996) 127-154. | MR | Zbl
, , and ,[9] Conservative high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. Poyal Soc. Lond. Ser. A 351 (1995) 107-164. | MR | Zbl
, , and ,[10] Initial-boundary-value problems for model equations for the propagation of long waves. In Evolution Equations, G. Ferreyra, G.R. Goldstein, and F. Neubrander Eds, Marcel Dekker, Inc.: New York (1995) 65-94. | MR | Zbl
and ,[11] A generalized Korteweg-de Vries equation in a quarter plane. Contemporary Math. 221 (1999) 59-125. | MR | Zbl
and ,[12] Decay of solutions to nonlinear, dispersive, dissipative wave equations. Diff. & Intégral Equ. 6 (1993) 961-980. | MR | Zbl
and ,[13] More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete & Cont. Dynamical Systems 1 (1995) 151-193. | MR | Zbl
and ,[14] An évaluation of a model equation for water waves. Philos. Trans. Royal Soc. Lond. Ser. A 302 (1981) 457-510. | MR | Zbl
, and ,[15] On the asymptotic behavior of solutions to nonlinear, dispersive, dissipative wave equations. Math. & Computers in Simulation 37 (1994) 265-277. | MR | Zbl
, and ,[16] Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations. Nonlinearity 8 (1995) 1179-1206. | MR | Zbl
, and ,[17] The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Royal Soc. Lond. Ser. A 278 (1975) 555-601. | MR | Zbl
and ,[18] The KdV equation, posed in a quarter plane. SIAM J. Math. Anal. 14 (1983) 1056-1106. | MR | Zbl
and ,[19] KdV equation in a quarter plane, continuous dependence results. Diff. & Integral Equ. 2 (1989) 228-250. | MR | Zbl
and ,[20] Similarity solutions of the generalized Korteweg-de Vries equation. Math. Proc. Cambridge Philos. Soc. 127 (1999) 323-351. | MR | Zbl
and ,[21] The dissipation of nonlinear dispersive waves. Comm. PDE 17 (1992) 1665-1693. | MR | Zbl
,[22] A nonlinear equation incorporating damping and dispersion. J. Fluid Mech. 42 (1970) 49-60. | MR | Zbl
,[23] Shallow water waves on a viscous fluid - The undular bore. Phys. Fluids 15 (1972) 1693-1699. | Zbl
,[24] Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. XLVI (1993) 27-94. | MR | Zbl
, and ,[25] A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573-603. | MR | Zbl
, and ,[26] Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968) 1204-1209. | MR | Zbl
, and ,[27] Nonlinear nonlocal equations in the theory of waves. Series Translations of Math. Mono. 133, American Math. Soc.: Providence (1994). | MR | Zbl
and ,[28] Short-wave asymptotics of weak shock waves and solitons in mechanics., Internat. J. Non-linear Mech. 11 (1976) 401-406. | MR | Zbl
,[29] Nonlinear theory of ion acoustic waves with Landau damping. Phys. Fluids 12 (1969) 2388-2394. | MR | Zbl
and ,[30] Sur quelques géneralisations de l'équation de Korteweg-de Vries. J. Math. Pures Appl. 58 (1979) 21-61. | MR | Zbl
,[31] The inviscid limit of the complex Ginzburg-Landau equation. J. Differential Equations 142 (1998) 413-433. | MR | Zbl
,[32] Shallow-water waves, the KdV equation and solitons. J. Fluid Mech. 47 (1971) 811-824.
and ,[33] Taylor series expansion for solutions of the KdV equation with respect to their initial values. J. Funct. Anal. 129 (1995) 293-324. | MR | Zbl
,