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ZERO-DISSIPATION LIMIT FOR NONLINEAR WAVES* **

JERRY L BONA 1 AND JIAHONG W U 2

Abstract. Evolution équations featuring nonlmeanty, dispersion and dissipation are considered hère
For classes of such équations that mclude the Korteweg-de Vries-Burgers équation and the BBM-
Burgers équation, the zero dissipation limit is studied Uniform bounds independent of the dissipation
coefficient are denved and zero dissipation limit results with optimal convergence rates are established
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1 INTRODUCTION

The incorporation of dissipative effects is often crucial m obtaimng good agreement between expérimental
observations and the prédiction of theoretical models describmg the propagation of waves in nonlmear dispersive
media (cf Bona et al [14] for an example from watei-wave theory) To take account of dissipative mechamsms,
a Burgers-type teim is often appended to nonlmeanty and dispersion m these models (cf Johnson [22,23] for
an early suggestion in this direction) Two such models are the well-known BBM-Burgers équation

ut + ux + uvux — uuxx — a2uxxt = 0 (11)

and the (generahzed) Korteweg-de Vnes-Burgers équation (GKdV-Burgers équation)

Ut-\-ux+ upux — vuxx + uxxx — 0, (1 2)

where u = u(x,t) is a real-valued function of two real variables x and t, p > 1 is an integer, v > 0 and a > 0
are real numbers Numerous numerical simulations and analytical studies have been carried out to détermine
the effect of such a term m these models (cf [4,7,8,12,13,15,16,21,27-29]) Laboratory studies show (1 1) with
p ~ 1 and a suitably chosen value of v has good prédictive power m cases where nonlmear effects are not too
stiong (eg the Stokes number is not too large m a water-wave context [14])

It is the purpose of this aiticle to mvestigate theoietically aspects of the dissipative effects mheient m these
two models when u > 0 Considération will also be given to a more gênerai class of models of the form

ut + (P(u))x + vMu - (Lu)x = 0, (1 3)
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where M and L are Fourier multiplier operators with non-negative symbols and F is a polynomiai. say

with dk £ M, k = 1,2, ••• ,p (see Bona [5] and Dix [21]). Interest will mainly focus on the pure initial-value
problem (IVP) for these équations wherein

u(x, 0) = uo(x), is specified for x G l ;

however, the initial- and boundary-value problem (IBVP)

u(x: 0) = uo(x), for x € R+,

u(0,t) = g(t), for t E M+,

for the BBM-Burgers équation will also be examined. In this article, particular interest is directed toward the
behavior of solutions in the zero dissipation limits.

In the limit as v tends to zero, équations (1.1, 1.2) and (1.3) formally reduce to the BBM équation, the
GKdV équation and a class of équations of KdV-type in generalized form,

u± + ux + vPux - uxxt = 0,

ut + ux+ upux + uxxx = 0,

ut + (P(u))x - (Lu)x = 0,

respectively. This suggests comparing solutions u to one of these équations with dissipation to the solution v
of the corresponding équation without dissipation. It is expected that for varions spatial norms || • ||,

\\u(;t)~v(;t)\\^0 (1.4)

as v —• ö, uniformly for t > U. Theory will be developed showing (1.4) is valid in certain circumstances.
Moreover, we will be able to détermine the rate at which \\u(-,t) — v(-}t)\\ approaches zero. A crucial step in
proving such convergence results is to obtain ^—independent bounds on solutions to the dissipative équations
and very often these are not available in the literature. Précise statements are provided presently.

The paper is organized as follows. Section 2 contains the relatively straight forward analysis of the zero-
dissipation limits for the IVP and the IBVP for the BBM-Burgers équation. In Section 3 we establish v-
independent bounds on solutions to the GKdV-Burgers équation in Hk for all integers k > 0 (the Hilbert space
Hk = Hk(R) is the L2-based Sobolev class of functions whose derivatives to order k are all square integrable).
This result is interest ing in its own right and crucial in obtaining the zero-dissipation limit results for the GKdV-
Burgers équation in Section 4. The relation (1.4) is determined to hold in || • \\Hk and the convergence is shown to
be O[y) as v —> 0. Section 5 is devoted to the équations of gênerai type depicted in (1.3). Zero-dissipation limit
theory in this section relies upon growth conditions on the symbols of the dispersion and dissipation operators
L and M, respectively.

2. ZERO-DISSIPATION LIMIT FOR THE BBM-BURGERS ÉQUATION

This section is divided into two parts. The first part is devoted to the zero-dissipation limit for the IVP for
the BBM-Burgers équation while the second part deals with the zero-dissipation limit for the associated IBVP.
Consider first the IVP

ut + ux + uvux - vuxx - o?uxxt - 0, (x,t) e R x IR+, (2.1)
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u(x, 0) = uo(x), x G M, (2.2)

where p > 1 is an integer, v > 0 and a > 0. As noted before. upon setting v = 0, équation (2.1) formally
reduces to

v>t + ux + upux - a2wxxt = 0. (2.3)

There is an adequate theory of well-posedness for the IVP (2.1-2.2) and the IVP (2.2-2.3) (cf. Bona et al [2,3]).
For our purpose, it suffices to have the following proposition, in which Cb(I, X) dénotes the bounded continuous
mappings u: ƒ —> X, J = [0,T] C M+, with its usual norm.

Proposition 2.1. Let uQ G Hs with s > 1. Then tfzere exists a unique solution u to the IVP (2.1-2.2) such
that, for each T > 0,

, oo); ̂ x ) n C([0,T]; ̂ 5 ) and 0É*u e C([0, T]\H8)

for each k > 0. Furthermore, for each T > 0 and /c > 0? i/ie solution map from u0 to u is analytic from Hs to
Ck([0,T]-Hs).

The preceding results hold for the IVP (2.2~2.3)7 but in this case d^u G C([0,T]; HS+1) for each k > 0 and
T>0.

We shall use u and v to dénote the solution to the IVP (2.1-2.2) and the IVP (2.2-2.3), with initial data u0

and VQ, respectively. The following lemma provides ^—independent bounds and other helpful inequalities for a
solution u to the IVP (2.1 -2.2).

Lemma 2.2. Assume that p > 1 and s > 1.
(i): Ifuisa solution of the IVP (2.1-2.2) with uQ G Hs, then for ail t>0}

f't rOQ

(2.4)

uxx G L2(R x M+), and \\u(-}t)\\L^ < C(a)\\uo\\Hi

where C(a) = max{a2,a~2}.
(ii): If v is a solution of the IVP (2.2-2.3) with initial data vo G Hs, then

, \\v(;t)h- < C(a)\\vo\\m (2.5)

and} if s > 2,

/ [vlfat) + a2v2
xx(x,t))dx < e " ^ - * / (v%x(x)+a2v%xx(x))dx (2.6)

ƒ \\vx{',s)\\Loods<2V2a\\vo\\1^vo\\H2 J e 1 ^ * - 1 J • (2.7)

Remark 1. In the proof that follows, and frequently in the rest of the paper, intermediate calculations are
made that use regularity in excess of that assumed on the data and hence in excess of that which the solution
possesses. The final inequalities do not suffer from this defect, however. Such calculations are easy to justify in
the présence of a strong continuous dependence result. Simply regularize the initial data, make the calculation
securely for the resulting smooth solution, and then in the final inequality pass to the limit as the regularization
weakens to the identity. This standard procedure underlies much of the theory developed here, but we will not
constantly remind the reader of its invocation.
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Proof The formula (2.4) is obtained by multiplying (2.1) by u, integrating over E x [0,t] and integrating by
parts appropriately. To show that uxx G L2(R x M+), multiply (2.1) by uxx and integrate. To finish (i), it
suffices to remark that

The proof of (2.5) is similar. To establish (2.6), multiply (2.3) by vxx and integrate over M to obtain

d
/ (vl(xyt)+a2vlx(x,t))dx = 2 / (vxvxxv

p)(x,t)dx
J-oo 7-oo

{v2
x{x,t) + a2v2

xx{x,t))àx, (2.8)

which leads to (2.6) after intégration over [0, t\. The inequality (2.7) follows by combining (2.6) and the estimâtes

\\vx('.s)\\Loc < \/2||vx(-,s)||L2||va;a;(-,s)||£,2 < C(a)\\vö\\Hi\\vxx(',s)\\L27

where the constants depending on a may be different from line to line.

In the following theorem, explicit estimâtes are established for the différence between a solution u to the IVP
(2.1-2.2) and v to the IVP (2.3-2.2). As a conséquence of these estimâtes, u converges to v with the sharp rate
of order v if the initial différence is maintained at order v,

Theorem 2.3. Assume that p > 1 and s > 2. Let u be the solution of the IVP (2.1-2.2) with uo E Hs and let
v be the solution of the IVP (2.3-2.2) with initial data VQ e Hs. Then the différence w = u — v satisfies the
inequality

a2)\\wx\\
2

L2 + a2\\wxx\\l2 < eA& {\\wo\\
2

L2 + (1 + a 2 ) ^ ! ! ! , + a2\\w0xx\\l2)
(2 9)

for all t > 0; where WQ = UQ — v$,

and

B(t) = aKll^lNll^ f e^r-* _ i j .

If we consider a one-parameter family {UQ}1/>O of initial data such that \\UQ — ̂ o||#2 = O(u) as v —> 0 (in
particular if UQ = VQ), then for any T > 0 and t <T

M;t)\\h + (1 + a2)\\wx(;t)\\
2
L2 +a2\\wxx(;t)\\l* = 0{v2)

as v —> 0.

Proof. The différence w satisfies

i»t + ^x + (upux - vpvx) - vuxx - a2yjxxt = 0. (2 10)
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Multiplying (2.10) by 2(w — wxx) and integrating over R yields

i /'OO

— (||w|li2 + (1 + a;2)ll^;x|||2 + ce2||^xx||L2) + 2^ / (w£ +w%x)dx
Ut J — oo

/'OO />OO

= 2v l (w- wxx)vxxdx - 2 / (to - wxx)((u
pwx + (up - vp)vx)dx. (2.11)

J—OO J—OO

The first term on the right-hand side of (2.11) may be bounded by

/"OO

/ v2
x

J — oo
dx.

Using the results of Lemma 2.2, there obtains

/ w(up — vp)vxdx •
J —oo

< h\no\\P
m H w2dx+ h\uo\\PHi H w*dx>

z J— oo z J ~oo

J — oo

wupwxdx

rOO

/ wxx(u
p-vp)vxdx

J— oo

and

wxxu
pwxdx

These estimâtes are combined to give

< iho\\p
m r ^dx+iiitioii^

z J-oo z J-

-Y(t) < A(t)Y(t) + B(t)

where

Y(t) = IK-,t)lli* a2
\wx(;t)\\h + <X2\\WXX\\2

L2,

=max{l,a-2}(l

and

B(t)=2v2 jv2
xx{x,t)dx.

By Gronwall's inequality applied to (2.12), there is derived the upper bound

Y(t) < (Y(0) + J* fî(s)ds) e/o A^dT

(2.12)

(2.13)

(2.14)

(2.15)
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which is (2.9) after reintrodiicing Y, A and B as in (2.13, 2.14) and (2,15), respectively, and usirig the bounds
in Lemma 2.2.

Xext. attention is given to the zcro-dissipation limit of solutions to the initial- and boundary-value problem
(IBVP)

ut + ux + upux - vuxx - a2uxxt = 0, (x,t) € M+ x M+
; (2.16)

u(0:t)=gi(t): t e l + , (2.17)

u(xt0) = uö{x), x e M+, (2.18)

where p > 1 is an integer, v > 0 and a > 0 and the consistency condition gi(0) = UQ(Q) is always assumed.
Our approach is to compare the solution u of the IBVP (2.16-2.17-2.18) with the solution v to the IBVP for
the BBM-equation

vt +vx^ vvvx - o?vxxt = 0, (x, t )GR + xR +
; (2.19)

v(Q,t) = g2(t), t 6 l + , (2.20)

v{x,0)=vo(x), ï G l + , (2.21)

in which 52(0) = ̂ o(O).

The well-posedness of both the IBVP (2.16-2.17-2.18) and the IBVP (2.19-2.17-2.18) has been established
by Bona. Bryant and Luo (cf. [6,10]). The following resuit suffices for our purposes.

Proposition 2.4. Let T > 0, 1 < p < A} u0 G C^(M+) n H2(R+) and gx e C^O^T) with #i(0) = uo(O)
(respectively} v0 e C6

2(M+) fl iJ2(M+) and g2 e C^O.T) with g2(0) = vQ(0)). Then the IBVP (2.16-2A7-
2.18) (respectively, the IBVP (2J9-2.20-2.21)) has a unique solution u such that, for any finite T > 0} u €
5y'1(M+) H C([0,T);i72(E+)) (respectively, v € By'1(K+) n C([0,T); iI2(R+)). Furthermore, the bound for
II w II H2 is independent of v for small v.

In Proposition 2.4 £>^(IR+) stands for the functions u defmed on M+ x [0,T] such that dxd
3

tu are continuous
and bounded over M+ x [0, T] for 0 < i < k and 0 < j < l. The principal zero-dissipation limit resuit for
solutions to the IBVP (2.16-2.17-2.18) is as follows.

Theorem 2.5. Let T > 0, 1 < p < 4, uQ}v0 G Cf(M+) H H2{R+) andgug2 e C^OjT) with g^O) = uQ(0) and
g2(0) — ̂ o(O). Consider the différence

w(x, t) — u(x, t) — v(x, t)

between a solution u to the IBVP (2.16-2.17-2.18) with data UQ and gi and a solution v to the IBVP (2.19-
2.20-2.21) with data v0 and g2. Then for any t G [0,T],

\\w\\2
L, + (1 + a 2) | |^ | | i 2 + a 2 |K , | | 2

2 < C^t) [\\wö\\
2

L2 + (1 + a2)\\wox\\h + a2\\w0xx\\h}

-h C2{t)v2 + C3||^l - ^l l 2
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where WQ = UO — VQ, 61,62 are functions of t and C3.C4 are constants, ail of which depend only on a7 p, T,

As a conséquence, if {UQ}V>Q and {si}i»o are families of initial and boundary data f or which \\UQ — VQ\\H2 =
0{u) and \\gi - 92\\c1(otT) = 0{v2), as v —> 0, then

\H\h + (i + ®2)\Mh + a2 | |^|||2 = o{u2)

as v —• 0 .

Proof The différence w = u — v satisfies équation (2.10) with initial value UQ — VQ. Upon multiplying this
équation by w — wxx, integrating over [0. oc) and integrating by parts appropriately, there appears

J /*0O

^(\\w\\l, + (l + a2)\\wxfL2+a2\\wxx\\
2

L2)+2iy (w2
x + w2

xx)àx (2.22)

/•OO rOQ

= 2u (w - wxx)vxxdx - 2 / (w - wxx){upux - vpvx)dx (2.23)
Jo Jo

-92)ux(0,t) + (gi-g2)
2 (2.24)

- 2(51 " 92)tWx(0,t) - 2a2(9l - g2)wxt(0,t). (2.25)

The terms in line (2.23) may be estimated as in the proof of Theorem 2.3 and, due to the bounds for | |u||#2

and \\v\\H2 (see Proposition 2.4),

/•OO /»OO

2v / (w - wxx)vxxdx - 2 / (w — wxx)(u
pux - vpvx)dx

Jo Jo

< C5(t)[\\w\\2
L2 + (1 + a 2 ) ! ) ^ ! ! ^ + a2\\wxx\\

2
L2j + 2v2 / v2

xxdx (2.26)

for 0 < t < T , where C$(t) is a function of t with dependence only on p , a , H^oll//2; II^OIIH"2* H^I I IC^O.T) a n d

For 0 < t < T, the temporal intégrais in lines (2.24) and (2.25) are estimated as follows:

/ ™2(0,T)dT< / K;(-,T)||loodT
JO JO

< / \\wx(;r)\\L2\\wxx(^r)\\L,dr<l [ (\\wx(-, r ) | | 2
2 + | K , ( - , r ) | | i a ) dr ;

Jo l Jo

-2i/ / (51 (r) - S 2 ( T ) K ( 0 , r ) d r < 2i^T||5i
JÛ

/ (5i W - P2(r))
2dr < T\\9l -

J 0

~2 / (si -£2)^(0,r)dr < 2||^i -^HCHO.T) / [kxI
JO JO
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f*

and

1 f
< \\9i-g2\\2ci{0)T) + ö / (IKIIi* + IksxlliOdr,

-2a 2 / (9i-g2)wxt{0,t)dT = 2a2(g1(Q) - g2(0))wx(0,0)
Jo

ft
-2a2{9l(t) - g2(t))wx(0,t) + 2a2 / (g[ ~ g'2)wxdr

Jo

T)(Nliï* + \\V\\H2) + ̂  f (|K||£a + IkxxIl

Intégrât ing équation (2.22) over [0,t) and combining the outcome with (2.26) and the last set of estimâtes
for the terms arising from lines (2.24) and (2.25), the inequality

V(w)(t) < Ce(t) / T(w)(r)dr + 2u2 / / v2
xxdxdr

Jo Jo Jo
Cs)\\9i - 92\\CHO)T) + C9||5i - ^ilci(o,T) (2 27)

obtains, where T(w)(t) = H^O,Ollia + (1 + a2)ll™x(*,£)|||2 + «2||^xx(-;0lli2- T n e desired result follows after
application of Gronwall's inequality to (2.27).

3. ^-INDEPENDENT i^fc-BOUNDS FOR THE G K D V - B U R G E R S EQUATION

This section focuses on the IVP of the G KdV-Burgers équation

ut + upux - vuxx -f uxxx = 0, (z, t ) e M x R + , (3.1)

u(xi0)=u0(x), xe l , (3 2)

where p > 1 and v > 0. The GKdV-Burgers équation and its dissipationless counterpart

ut + u ^ s + uxxx - 0, (x, f ) e l x R+, (3.3)

have been the subject of numerous investigations {cf. Bona et al. [8], Kenig et al. [24,25]). There is an adequate
theory of well-posedness for both the IVP (3.1-3.2) and the IVP (3.3-3.2). The following results of Bona
et al [8] and Kenig et al. [24] serve our purpose nicely.

Proposition 3.1. Let v > 0 and u0 € HS(R) with s>2.
(1): If p < 4, then there is a unique global solution u of (3.1-3.2) such that

u e C([Q,T}]HS), for every T > 0

and \\u(-,t)\\ffi is umformly bounded m t.
(2): If p > 4, then there is a TQ = Todlitolln1) > 0 independent of v > 0; and a unique solution u €

C([0,TQ); HS). If \\UO\\H1 %S sufficiently small, TQ may be taken to be +oo and the solution is global.
Moreover, for t > 0, u(-,t) is an H'°°(R)-function of its spatial variables and consequently u is a C°°-function
m the domain { (x , t ) : iER, 0 < t < To} where To = oc m case (1) or m case (2) if the data is small. In ail
the above cases, the solution u dépends contmuously on UQ %n the exhibüed function classes.
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Proposition 3.2. Let p > 1 be an integer and s satisfy

s > 3 / 4 , tfp = l;

s > 1/12, ifp = 3;

T/ien /or any 1£Q G Jïs(M) t/iere exîste T = T(||UO||JÏ3) > 0 and a unique solution u of the IVP (3,3, 3.2)
sattsfymg

ueC([0,T\;H').
When p = 1 and s > 1 or p < 4 and s > 2 or when uo is small enough, the solution u extends globally m

Urne. In any event, u dépends contmuously on uo %n the exhibited function classes.

Remark 2. The situation for KdV-Burgers is different from that arising with BBM-Burgers in the following
respect. At least for the pure initial-value problem, the BBM-Burgers équation is globally well-posed regardless
of how large p is. It is otherwise with the (generalized) KdV-Burgers équations where the indications are that
large solutions may blow up in finite time if p > 4 (see Bona et al. [8], [9] and Bona and Weissler [20]) even
when v > 0

However, bounds on solutions of (3.1-3.2) which do not depend upon v seems not to have been derived. It is
the goal of this section to provide such bounds. More precisely, it will be shown that for each positive integer
&, there is a constant Ck depending only on ||uo||i/fc such that the solution u to the IVP (3.1-3.2) obeys

for allt > 0 if p = 1 or 2 and for ail t m bounded intervais [0, T] if p > 3, where T < T*, the existence time
for the solution in question. The proof is made via an induction argument. Attention is concentrated on the
cases k = 1 and k = 2. When k > 3, the argument simplifies because, with k = 2 in hand, it follows that ux is
boundedj independent of t in the relevant interval.

Theorem 3.3. Let p > 1 and u0 € #X(]R). Then solutions u to the IVP (3.1-3.2) for the GKdV-Burgers
équation have the following properttes.

(i): If p G [1,4), then there is a constant C\ depending only on p and \\UQ\\HI such that for any t G [0, oo),

K-,t)ll#i<Ci. (3.4)

(ii): If p > 4, suppose that e = ||uo||ffi ts such that

and €2(1
' ' ' V V) \V

where jip = 2/(p + l)(p + 2). Tften /or any t G [0, oo), £/iere is a constant C^ depending only on p and e
such that

Remark 3. These bounds are not only independent of vy but also uniform with respect to t, regardless of the
value of p.

Proof. For notational simplicity in the calculations hère, références to the measures dx and dt are omitted when
we write intégrais. First, recall that

/•OO pt pOO pOO

/ u2 + 2u u2
x= u2

0. (3.5)
J—oo JQ J— oo J— oo
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Multiplying (3.1) by uxx •+- up+1/(p-\-1) and integrating on ]& x [OA] leads to

ft fiOC

^xx

/•OO cy ft pO

f <+2 ~vh
J-oc P+LJo J-

/O J-oo

for all t > ü, where

This formula constitutes the base for our further estimâtes. Clearly. we have

To simplify the présentation, define

e = II^OIIH1 an<3 <j(t) = sup ||ua;(-, <S)||L2-
0<s<t

Integrating by parts and using (3.5) gives

2v f1 f°° _+1 o /•* f°° v 2 .. . X11_ /£ r°° 27 / / w r a r T = lv l ƒ upux< sup IhH^sJlIjT^ ux

< € S U p | | w ( - , s ) | | ? 2 | | t i x ( - , 5 ) | | ^ 2 < e + ï ï S U p | | l i a : ( I ï S)\\T2 -

Putting (3.6), (3.7) and (3.8) together yields

cr2(t) - C3a
Ji (£) + 2v I I u2

xx< C4 (3.9)
Jö i-00

depend only on p and e. Formula (3.9) suggests a natural trichotomy.

(i) If p G [1,4), then | < 2 and we can apply Lemma 3.4 below to inequality (3.9), whereafter the desired
result (3.4) follows.

(ii) When p = 4, we insist that e is sucli that

and then (3.8) implies a2(t) < (1 - C s ) " 3 ^ .

(iii) For p > 4, if e is small enough that
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and since a(t) is a continuous function of ty it follows from (3.8) that

a(t) < 7(5), for all t > 0,

where j(e) is the smallest positive root of

The proof of Theorem 3.3 is thereby completed.

Lemma 3.4. Let P, Q and f5 < 2 be positive numbers. IfY>0 satisfies

Y2 - PYP < Q,

then Y is bounded by

Y :

A simple proof of this lemma is provided in [31].

We now proceed to the case k = 2. A crucial step in establishing the uniform bound in this case is the
dérivation of a particular intégral identity valid for smooth solutions of (3.1-3.2). This result is the subject of
the next proposition.

Proposition 3.5. Let v > 0 (respectively, u = 0) and u0 € Hs with s > 2. Then the associated solution u of
the GKdV-Burgers (respectively, GKdV) équation with initial data UQ satisfies the formula

f°° r ^ i c% r°° r°° r ^ i
/ ( " > • O O n - i ^ \ II O ƒ O O O • \ I

/ ?/ (v i\ ?; i j ^ / r / l HT 4- 97̂  / / 11 HTHQ — / 7/ (r (\\ -i/^i/^fr Hl HT
ƒ UinrpyJU. o) Ui—Lu \JU, vi U.U/ [ Als f I (X™ r T Ui tU.ö — / tt™„VX, U} _ (JU^UJ I X , U I KXJU

j-00 L ö j Jo J-00 J-00 L ó J

dxds,

for allt>0 for which it exists.

Proof. We write ƒ ƒ for JQ / ^ and omit da; and ds for simplicity of reading and writing. The proof of this
proposition involves two steps. The first step is to dérive the identity

ƒ u2
xx(x, t) + 2i/ ƒ ƒ u2

xx:c(x, s)dxds + 5PJJ u^vF'1

= J°° v*x{x,0) + \p{p- l)(p- 2) ƒ ƒ ulu^3 (3.11)

and the second is to establish that

[Uxx\XiZ) ~ UxU \Xil)\ ^ LV I I Uxxx^Z'P I I ux
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p ( p - l ) ( p - 2 ) t i | t 4 P - 3 + p u 3 t i 2 p - l

+ v f J \^ulxvP - |p(p - l ) n ^ - 2 ] , (3.12)

provided u is the solution of (3.1-3.2) with initial data UQ.

The purpose of deriving these two identities is to use them jointly, but at the same time eliminate the troublesome
term

J Juxu
2
xxu

p-\
after which (3.10) follows easily.

For (3.11), differentiate the GKdV-Burgers équation with respect to x. multiply the result by uxxx and
integrate over (—oo, oo) x [0,£], so coming to

/»OO /* P /'OO /» /•

/ ^ (a ; ,*) + 2i/ / / ^ x a ; = ƒ ^ x (x ,0 ) + 2 ƒ ƒ nxxx(ti%x)x. (3.13)

The last term may be treated as follows:

/ / uxxx(u
pux)x = uxxx{upuxx + pvP^ul)

— - [ f(v2 ) iip -n f fv (vp~xv2)~2JJ(uxx)xu pjjuxx[u ux)x

= -y ƒ fu^u^-pip-l) I Juluxxu
p-"

5p f f 2 — 1 1 f f 5 -3

2 j j x xx 4 y y
Equation (3.11) follows from (3.13) and (3.14).

For (3.12), multiply the GKdV-Burgers équation by TXxzxrr + {upux)x and integrate over (-00,00) x [0,t].
After suitable intégrations by parts, we obtain

ƒ «|a(x, t) + 2i/ ƒ ƒ «Lx + ƒ f(

Jxxu
2

xu
p-1. (3.15)

In (3.15), the two terms

ƒ / Uxxul^"1 and / / (upux)xut

need further elucidation. First of all, note that

ƒ Juxxu
2

xuV = \f f{ul)xuxu^ = -l-J JuxxulvP-^ -P-1J Juin?-2,
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and therefore

JJuxxulu^ = -E^l 1 1 u%uv-\ (3.16)

On the other hand, it is clear that

| ƒ ƒ 4 ƒ ƒ ^ + f ƒ ƒ ̂ -
Use the évolution équation itself to represent Ut, so obtaining

ƒ J(^ux)xUt = ~ ƒ °° [«M*, *) - «M*. 0)]

f ƒ ƒ ̂ V

- £ ƒ ƒ „3«*-i + Ç ƒ juluxxu^ -ljjulu^uxxx> (3.17)

while the last term in (3.17) can be further expressed as

- | ƒ ƒ t&i^u», - P ƒ ƒ u.t&uj-1 + IP(p _ i) ƒ ƒ x ^ ^ - 2

= pj fuxulvv?-1 + |p(p- l)(p- 2) ƒ ƒ tx5
x̂ -3.

In summary, there obtains

ƒ J{vPux)xut = - i ƒ ~ [«^(x, i) - ttSuP(ajj 0)] - | ƒ ƒ K^2"-1 + y ƒ ƒ «Sti,^-1

^ - 3 - (3.18)

Collect the estimâtes (3.15, 3.16, 3.18) and the desired identity (3.12) follows.
This complètes the proof of Proposition 3.5.

The v—independent bounds in H2 are now stated and proved.

Theorem 3.6. Let p > 1 and v > 0 (respectively, v = 0). Assume that the initial data UQ e H2 and for p > 4,
that H^OIIH1 ^ sufficiently smalL Then for ail t > 0, the solution u of the GKdV-Burgers (respectively} GKdV)
équation with data UQ obeys

\H;t)\\H*+v f f u2
xxx(x,s)dxds < CseC*\ (3.19)

JO J-oo

for some constants C5 and C§ dependmg only on p, a and H^OIIH2- For p = 1 or 2, we may take CQ = 0 and
thus the bounds are uniform m both t and v.

Proof The argument is fîrst made for gênerai values of p. Recall the already established uniform bounds

rt />oo

v \ ƒ ux(x, s)àxàs + ||u(-,£)||£,2 !
Jo J-00
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[» [ [ ulx(xis)dxd3 + \\u(;t)fm < CV, (3.20)
JQ J-OO

for ail t > 0, where Cj dépends only on p, a and

In outline, the argument is to combine (3.20) and the identity (3.10) in Proposition 3.5 to obtain the bounds
advertised in (3.19). Formula (3.10) implies the inequality

/

't noo C /)OO r /*OO

/ u2
xxx(x,s)dxds < \\uOxx\\h + ~ / \u\pu2

x(x,t) + - / \u\Pu2
x(x,0)

J — OO & J-OO ^ J-OO

(3.21)
» J J

But since |M|/,°° < ||^IU2||wx||^2, it follows that for r > 2,

J — oo

Using this relation with r = 3,4 and 5 in (3.21) yields

where Cg and Cg depend only on p and Ijunlln2- That is,

\\uxx(;t)\\
2

L2+2u f f U2
xxx{x,s)dxds<C8 + C10 f \\uxx(;S)\\l,d8

Jo J=oo Jo

for some C±o depending on p and ||uo||i/2 only. A standard Gronwall-type argument gives (3.19).

The case p = 1 and 2 are special because in these cases, when v = 0, there are higher-order invariant
functionals and these may be used to obtain (3.19) with Ce — 0. The case p = 1 is worked out hère, but the
case p — 2 is entirely similar. The crux of the matter is to use rather than (3.10), the more spécifie identity

ƒ [^ulx(x, t) - 3u(x, t)u2
x(x, t) + ^u4(x, £)] dx

pt /»OO - 1 O ^

+ u ~Tulxx(x^ 5) + 6u(x, s)ulx(x, s) -h 3w2(x, s)ul(x, s) dxds
Jo J-oo L 5 J

which holds for H2— solutions of the initial-value problem (3.1-3.2). This relation is obtained by multiplying
(3.1) by us + 3ux — 6uuxx + | u X X M , integrating the result over M x [0,t] and integrating by parts suitably.
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This identity implies that

9
is

çt pOO

/0 J-oo

where Cn dépends only on the H2—norm of the initial data. Because of the prior results in (3.20), it follows
that

r\ /*OO -| Q pt pOO

- / u2
xx(x7t)dx + v — / u2

xxx(x,s)dxds
0 J~oc ° J0 J-OO

pt poo

Jo J-oo

pOQ pt pOO

ƒ u2
xx(x,t)dx + v ƒ u2

xxx{x, s)dxds < 6Cf + 3C? + C
J— oo JO J — oo

is boundedj independent of i and z/, solely in terms of p, a and ||tio||jï2 only.

Attention is now turned to the inductive step which corresponds to the cases k > 3.

Theorem 3.7. Let p > 1 and v > 0 (respectively, v = 0). Assume that the initial data UQ € Hk with k > 3
and if p > 4, £/m£ Ĥ oHi?"1 ^5 sufficiently small. Then the solution u ofthe GKdV-Burgers (respectively, GKdV)
équation with initial data UQ is uniformly bounded in Hk. That is, for any T > 0, there exists a constant C&
depending only on p, a, T and \\uo\\j^k for which

[ [ < Ck (3.22)
O J—oo

for ail t G [0,T]. If p = 1 or 2, Ck can be taken to be independent of T.

Proof. The argument for k = 3 is représentative. Multiply the GKdV-Burgers équation (3.1) by uxxxxxx and
integrate over (—00,00) x [0,£]; after intégrations by parts, we have

pOO p p pOO p p

/ u2
xxx(x,t) + 2v u2

xxxx= / u2
xxx(x,0) + 2 I v?uxuxxxxxx.

J — oo J J J — oo J J

Only the last term needs attention. Integrate by parts further to obtain

I j u uxuxxxxxx = — ƒ I (u ux)xxxuxxx

— — p(p — l)(p — 2) / up~su4uxxx-\-7p(p — 1) / up~2u2uxxiJ J J J
+ 4 p / [up-\2u + » „ / lu^uu2

y y 2 j j

The last two identities enable us to argue successfully for the bound (3.22) as in the proof of Theorem 3.6.
The argument for arbitrary k is similar.

As in Theorem 3.6, for the cases p = 1 and 2, a more elaborate argument can be mounted which leads to
bounds that are independent of both v and t. The argument relies upon the hierarchy of conservation laws that
obtain in case v = 0. Briefly, for each k = 1,2, • • •, a sufficiently smooth solution of the KdV-equation (p = 1),
or the mKdV-equation (p = 2) satisfies a séquence of identities of the form

| £ , (3-23)
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where, Ik and Fk are polynomials in u and the partial derivatives dJ
xu1 which we write as U(j) for convenience,

j = 1, 2, - • •. In more detail, for KdV, Ik dépends on u, dxu} • • •, d%u and Fk dépends on w, dxu^ • • •, d^r2u.
Moreover, suitably normalized, Ik has the form

Ifc(u) = 2u?fc) + am^_ 1 } + • • • , (3.24)

which is a finit e sum of terms of index k + 2 where the index of a monomial

«&)-«&) (3-25)

is

X> + 5l>- (3-26)

The fluxes Fk have a similar form except that their gênerai term, which is also of the form (3.25), has index
h + 3. The formulae in (3.23) are derived by multiplying the KdV-equation by a factor Ak{u)> where Ak{u) is
a polynomial in u, ux, • • •, W(2/c) composed of monomials of index k -\-1. In gênerai, A^(u) may be normalized
to have the form

Ak{u) = (-l)ku{2k) + • • • + aW
fc+1. (3.27)

These f act s follow direct ly from the original analysis of the KdV- and mKdV- conservation laws given by Miura
et al [26].

When v > 0, the formula
Ak(u)(ut + uux + uxxx — vuxx) = 0

may be put into the form

dtlk(u) - vuxxAk{u) = dxFk(u). (3.28)

The second term on the left-hand side of (3.28) may be written as

- vuxxAk(u) = ~i/ua

= 2v\u\k+1) + Qfc(u)J + vdxGk{u), (3.29)

where Qk is a linear combination of the other monomials of index k + 3. Intégration of (3.28) with respect to
x over R, and after imposing zero boundary conditions on u, ux, • • •, at ±oo, leads to the relation

1 /»OO /*OO /*OO

— / Ik(u)dx + v \ ^(jt+i)^ = v ƒ Qfc(^)dx.
*^^ J—oo J— oo J— oo

Intégration with respect to t over the interval [0, to] then yields

f°° 9 fto f°°
ƒ U / ^ N ^ I C , CojQX ~h Zf/ f ! U/k^_^\yXil)dXQ.l

J— oo Jo J— oo

/»OO /*OO /*£Q /*OO

= / Ik(g)dx~ / ïk(u(x,to))dx + i/ / Qk(u(x,
J—oo J — oo ./O J — oo

(3.30)
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where

u
2

{k)(x,t)dx.

The stage is now set for an induction on k. Assume that (3.22) is valid for ail k < m and that C& does not
depend on v and t. We then use (3.30) to show that, provided g E i ? m + 1 , then (3.22) is valid for k — m + 1.
As it is already established that (3.22) is true for k < 2, this will finish the proof. It suffices to bound the
right-hand side of (3.30) for k = m+ 1, independent of v and t. By the induction hypothesis, there is a constant
Cm depending only on ||#||jFf™ such that

\\u(;t)\\H™<Cm and v f f u\ni+1){x,s)dxds<Crn (3.31)

for ail v,t>Q It is easy to see that it g G £Tm+1, then J^ / m + i (g(x))dx is finite - a fixed constant independent
of t and v. Moreover, it is straight for war d to détermine that all the terms in f_oo Im+i(v>(%,t))dx except the
top-order term J_OQ U/m+1\(£, t)dx are bounded by a suitable power of the constant Cm in (3.30) (cf. Bona-
Smith [17], §4) Thus J^ ïm+i(u(x,t))dx is bounded independently of t and v. A similar conclusion may be
drawn about JQ J^^ Qk(u(x,t))dxdt. Indeed, the only terms that might be troublesome are

rt />OO pt r>OO
y ! / titifm+i)dxdt and v ƒ / uxv%m)dxdt. (3.32)

Neither of these gives trouble since ||ii(',£)||#2 is already known to be bounded, independently of v and t on
account of Theorem 3.6, and so ||IA(-, t)||x,°° &nd ||̂ œ(*, £)||L°° are bounded, independently of v and t. Thus the
terms in (3.32) are bounded by CiG^ and C2C%l_l, respectively. Thus, for k — m + 1, the right-hand side of
(3.30) is seen to be bounded, independently of t > 0 and v > 0. The inductive step is completed and the desired
resuit follows.

4. ZERO-DISSIPATION LIMIT FOR THE G K D V - B U R G E R S EQUATION

The uniform bounds derived in Section 3 lead directly to the zero-dissipation limit results for the GKdV-
Burgers équation. It is shown in this section that for each nonnegative integer fe, the solution of the IVP
(3.1-3.2) converges in Hk to the solution of the IVP (3.3-3.2) with the sharp rate of order v. Our approach is
again inductive and the focus is on the cases k = 0 and k = 1, which correspond to the results in L2 and H1.

The first resuit is the zero-dissipation limit in case k = 0.

Theorem 4.1. Let p > 1 be a positive integer. Assume that VQ and {WQ}^>O &e m H2(R) and consider the
différence

w(xyt) = u(x,t) — v(xyt)
between a solution u~uyio the IVP (3.1-3.2) with initial data UQ and a solution v to the IVP (3.3-3.2) with
initial data VQ. Let To be the maximal existence time for v. By Proposition 3.1, the solutions u = uu ail exist
at least on the time interval [0,T0). Then, for any T with 0 < T < To and t e [0,T],

^ fe^C'{T)dT H vUx,s)dxds (4.1)

where Ci %s afunctwn oft with dependence onp, HUOIIH1 and II^OIIH2 on^V In particular, if \\UQ —^O||Z,2 = O {y)
as v —> 0; then

\H;t)-v(;t)\\lS=O{v)
as v —> 0; uniformly for t € [0, T].
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Proof. The différence w solves the équation

wt -f (u
p - vp)vx + v?wx - vwxx - uvxx -f wxxx = 0. (4.2)

Multiplying (4.2) by w and integrating over (—oc,oo), we obtain

3=0

and

\ />oo

III =- (w + v)pwwx = - 5^ ( • ) /

l^ö v J

where the three terms on the right-hand side may be estimated as follows

roo i />co 2 foo

T — I < I 2 ̂  / 2

~~ I xx — o I 2 / x x '
J—oo * J—oo * J—oo

ii=- r (up - vp)vxw=- 5z /°° (uP-i

J — OO j_Q J — OO

„ i

/»OO

w2, (4.5)

/"OO

O I I L - / w2. (4.6)
J — OO

J— u

Noticing that

and using the results in Theorem 3.3 and Proposition 3.2, we obtain from (4.5) and (4.6) that

/ / < C2(t) [°° w2, III < C3(t) [°° w2, (4.7)
J — oo J — oo

for some fonctions C^ and C3 which depend on p, Utiollff1 and ||^O||H2 omy* Combining (4.3), (4.4) and (4.7)
gives

/"OO /"CO

<u* / v2
xx + C4(t) w2, (4.8)

J—oo J—oo

where C4(£) is a function of t which dépends only on p, H^olli/1 and H^OIIH2- The desired result (4.1) follows
from (4.8).

Remark 4. It seems likely that the result of Theorem 4.1 actually holds for any p of the form m/n where m
and n have no common prime factors and n is odd, provided we interpret y1/71 as that branch of the n-th root
which is positive for y > 0.
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A familiar bootstrap argument allows us to extend the convergence results to higher values of k. The
—independent iïfc-bounds play an important rôle m obtaining this gênerai resuit.

Theorem 4.2. Let p > 1 be a positive integer. Assume that {UQ}V>O and v0 lie m Hs with s > 2 and suppose
that there is a constant C5 such that \\UQ — VO\\H^ < C^v as v —> 0. Then for any integer k with 1 < k < s — 2,
the différence u — v between the solution u — uv of the IVP (3.1-3.2) with initial data UQ and the solution v of
the IVP (3.3-3.2) with initial data v0 has the property

uniformly for 0 <t <T, where C5 is a constant dependmg only on Cs, p} T', WUOWH1* and \\VQ\\H* and T > 0 is
any fixed time less than the existence time Tb for v.

Proof. The proof of (4.9) is sketched for k = 1. The proof of (4.9) for k > 2 is similar. Differentiate the
équation (4.2) for the différence w = u — v with respect to x, multiply by wx and integrate over (—00, 00) x [0, t]
to obtain

f wl(x,t)+2v f wlx= f w2
x{x, 0) + 2v f / vxxxwx

j—00 J J J—00 J J

- ƒ (upwx)xwx- / ƒ [{up - vp)vx]xwx.

Further intégrations by parts show that

I I \ u wx)xwx — — ! / W U)XWXX — — ! ! UXU U)x

f f[(up - vp)vx}xwx =p f f(up~lux - vp~lvx)vxwx + f f(up - vp)vxxwx

= P f f {up-x - vp-x)vlwx + p f fup^vxwl^ f f{up-vp)vxxwx.

It is known from Section 3 that the i/2-bound on u is independent of v. This in turn implies i^-independent
£°°-bounds for u and ux. Thus, the terms above may be bounded as follows:

uxxx "̂

/•OO /*O

1v j Vxxxwx < y2 \
J— 00 J—

J J{UPWX)XWX < IWiUxVP-^i-ML- J J Wl

J ƒ K - 1 - V^)vlwx < J2 \\{Tf-1-kVkvï){;t)\\L- J J \W\\WX\

ƒ JvP-^wl < ||K-V)(-,i)IU- ƒ ƒ wl

ƒ ƒ K - VP)VXXWX < J2 MW-i-Wv^i; t)\\Loo J J(W2 + Wx).
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Combining these estimâtes, applying Gronwall's inequality and using the zero-dissipation limit result in L2

establishes (4.9). This complètes the proof of the theorem.

5. ZERO-DISSIPATION LIMIT FOR THE ÉQUATION WITH MORE GÉNÉRAL FORMS
OF NONLINEARITY, DISPERSION AND DISSIPATION

This section is concerned with the more gênerai IVP

dtu + (P(u))x + vMu - (Lu)x = 0, (x}t) e W x M+, (5.1)

u(x,O)=uo(x)y x€E, (5.2)

where v > 0, P: R —» E is of the form

p+i
P(u) = VJ cikUk for some constants a&, 1 < k < p + 1, (5-3)

fc=i

and L and M are Fourier multiplier operators denned in terms of the Fourier transform by

M O - *{Ç)u(O, Mu(0 = j8(0ï(€), (5-4)

respectively. The symbols a and f3 are even, positive and are presumed to satisfy the growth conditions

Ci|£tA < a(0 < C2|£r, (5.5)

(5.6)

for some numbers d > 0, 1 < i < 4, where 0 < À < fi and 0 < 7 < a.

The goal of this section is to establish zero-dissipation limits (the limit as v —>• 0) of solutions to the IVP
(5.1-5.2). Guided by what has gone before, the approach is to compare the solution to the IVP (5.1-5.2) with
the solution to the IVP for the corresponding équation without dissipative efïects, namely

dtv + (P(v))x - (Lv)x - 0, (x,t) G M x R+, (5.7)

v(x1Q)=vo(x), xGR. (5.8)

The well-posedness of the two initial-value problems (5.1-5.2) and (5.7-5.8) was developed by Saut [30] (see
also Abdelouhab et al [1]) and the following propositions will serve our purpose. In what follows D(L1/2) C
L2(R) dénotes the completion of CQ°(M) in the norm induced by the inner product [•, •] defined by

[u,v}= [
Jm
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Thus D{LX^2) is a Hubert space and it follows from (5.5) that

H^2cD(L^2)GH^2. (5.9)

Proposition 5.1. Assume that the symbols a of L and (3 of M are positive, even, satisfy (5.5) and (5.6),
respectwely, and that P is of the form (5.3) with

A + 7 > a and p < 2(A + 7 - a).

Ifuo G D{LX^2), then for any T > 0, there is a solution to the IVP (5.1-5.2) such that

u e C([0, T}; DiL1'2)) n L2([0, T]; D{{LMf'2)).

Proposition 5.2. Assume that the symbol a of the operator L is positive, even and satisfies (5.5), and that P
is of the form (5.3) with 1 < p < 2A. If v0 e D(L^2), then for any T > 0, there exists ave C([0, T]\ D(l1/2))
solvmg the IVP (5.7-5.8). Moreover, v is unique and vx e L°°(R x (0,T)) if A > 3.

In addition, if v0 G HS(R) with s > 3/27 then there is T* = T*(\\VO\\H*) such that v G L°°([0,T*); Hs).
Moreover, the correspondence between initial data and the associated solution is an analytic mappmg between
the displayed function classes.

Remark 5. In Saufs original paper, solutions were obtained as weak*-limits of solutions of the évolution
équation with a strong parabolic regularization. Consequently, the function class obtained was only L°°([0, T];
^(L1/2)). In [1], a limiting procedure was developed that featured strong convergence, and hence solutions
were inferred to lie in C([0, T]; ̂ (L1/2)), and, moreover, they were shown to depend continuously on the initial
data. Using the techniques of Zhang (see [33]), the analyticity of the solution map may be adduced.

To establish zero-dissipation limit results, we need i^-mdependent bounds for the solutions to the IVP (5.1-
5.2) . These are obtained in Theorem 5.3 below, following the developments of Saut [30].

Theorem 5.3. Assume that the symbols a of L and P of M are positive, even and satisfy (5.5) and (5.6),
respectwely, and that P is of the form (5.3) with

A + 7 > a and p < 2(A + 7 — a).

If UQ G ^(L1 /2) , then a solution u to the IVP (5.1-5.2) with initial data u0 is bounded as follows. For any
t>0,

ƒ / /
JQ Jm

where C5 and CQ are constants dependmg only on

Remark 6. As an important conséquence of this theorem and the Gagliardo-Nirenberg inequality, for A > 1,
there is inferred to exist a constant C7 for which

\

which shows there is an L°°-bound on u which is independent of the dissipation coefficient v.

Proof of Theorem 5.3. For notational convenience, ƒ will mean the spatial intégral J^- Multiplying (5.1)
by u and integrating over Rx [0, t] yields the analog

IMl£ 2 +2i / / f uMu < \\uo\\
2
L2 (5.10)
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of (3.5). Multiplying (5.1) by P(u) — Lu and integrating by parts over R x [0,t] gives

fuLu-2 f k(u) + 2v f f(Lu){Mu)= [(UIM){0)-2 [A(U)(0) + 2V f [P(u)Mu,
J J Jo J J J JQ J

where Af(u) = P(u) and A(0) = 0. The individual terms in (5.11) are now estimated. First, notice that

p + 1 r p + 1 fci fci

/

fe=l fc=l

and since p < 2(A + 7 — a) < 2À, it follows that (fc — 1)/A < p/X < 2. Hence, after applying Young's inequality
to (5.12) and using (5.5), there obtains

A(«)

J

where C\ is as in (5.5).

For the intégral ƒ P(u)M(u), it sufHces to consider the leading order term

(5.13)

The Gagliardo-Nirenberg inequality implies that

However, the term ||tip requires a little more effort. The following standard lemma is helpful.

Lemma 5.4. /ƒ f1} f2, • • •, fm He in HP(R) wüh mp > (m — l)/2, then their product ƒ1 ƒ2 • • • / m is in HQ(R)
for any g < mp — (m — l)/2 and

\\flf2 ' • • fm\\H* < \\h\\H4Î2\\HP • ' * \\fm\\HP.

Since 7 + A — a > 0 and p < 2(7 + A — a)y which is to say,

there is an 5 > 0 such that

(5.14)

or what is the same, a/2 < (p + l)s —p/2. Applying Lemma 5.4 gives

and then the Gagliardo-Nirenberg inequality leads to the inequality

\U\\H-
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In summary, we obtain the inequality

up+1Mu
\J

Erom (5.14), the exponent in (5.15) has

<CU\\U\\H:£
X . (5.15)

2s(p+l)+a ^ n
7 + A

and thus another application of Young's inequality yields

uP+lMu C12 + \Ja(t)P(0\U\2 (5.16)

where C\ and C3 are as in (5.5) and (5.6).

Collecting the estimâtes (5.11, 5.13) and (5.16) and using the L2 — bound in (5.10), there obtains

Jm Jo Jm

for some constants C 5 and CQ depending on ll^oll

These preparatory results set the stage for a proof of the following zero-dissipation limit result.

Theorem 5.5. Assume that the symbols a of L and fi of M are positive, even and satisfy (5.5) and (5.6),
respectively, and that P is of the form (5.3) with

<7 and p<2(A + 7 ~ o).

Let UQ,VQ G D{L1/2). Consider the différence
w = u — v

between the solution u — uu to the IVP (5.1-5.2) with initial data UQ and the solution v to the IVP (5.7-5.8)
with initial data VQ. Then as long as v has the properties

veL2{[^T]-D{M^2)), and A(T) = / \\vx(',r)\\L^dr < oo, (5.17)

for some T > 0; then

sup \H;t)-v(;t)\\h <
0<t<T

where C13 and C14 depend only on | |^O||D(L1/2) and

The condition (5.17) is fulfilled when either X > 3 ; and then it holds for all T > 0 ; or when vo € Hs for some
s > 3/2 and then it is valid for some T = T*, where T* is as in Proposition 5.2. If {UQ}1^>O is a one-parameter
family of initial data for which \\UQ — ̂ o||^2 = O(v) as v —> 0 ; then it follows from (5.18) that

sup \\u{-yt)-v(-yt)\\l* =O{v)
0<t<T

as v —• 0.
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Proof. The différence w = u — v is & solution of the équation

dtw + P'(u)wx + [Pf{u) - P'{v)]vx - (Lw)x + vMw + uMv = 0.

Multiplying (5.19) by w and integrating over M. leads to

- — / \w\2 4- / P/(u)wwx -f / [P\u) - P\v)]wvx - j w(Lw)x + v wMw + v \ wMv = 0.

Since a is positive and even, L is self-adjoint and so

fw(Lw)x =i Ua(O\

For the remaining terms, argue as follows. First,

(5.19)

w

and also

ƒ"<-»wwx = l)a f c+i l)afc+1 -3q

fc=lj=0

As a conséquence of Theorem 5.3, the L°°-bound on tx is independent of the dissipation coefficient v. It then
follows that

Similarly, it is seen that

\jP'(u)wwx < C15\\vx\\Loo I w2.

\J[P'(u)-P'(v)]wva

k=2

p+lfe-2

J

k=2 j=0

<C16\\vx(.,t)\\L~ jw2.

Collecting the above estimâtes and letting Y(t) = ƒ \w(x, t)\2dx, there appears

Y' + v fwMw < v f f3(O\v\2 +

The desired result (5.18) now follows from GronwalFs lemma.

The convergence rate obtained in Theorem 5.5 can be improved if the solution v of the dissipationless équation
is smoother, as the following theorem attests.
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Theorem 5.6. In addition to the assumptions made in Theorem 5.5, we further assume thatv0 e D(Ll/2)nHs

with s > max{3/2, a}. Then for any t < T*;

\H;t)-v(;t)\\h=O(^) (5.20)

where T* is the maximal existence time for v.

Proof According to Proposition 5.2, the solution v of (5.7=5.8) remains in Hs over [0,T*). Thus for any t < T*,

vJwMv <£jpP(ç)\$\* + lJ\{5\*<lÇ.\\v\\H. + ±J\w\2.

Consequently, the following inequality émerges:

— / |io|2da; + 2v ƒ wMw < / \w\2dx + ̂ 2||^||jf- + C I 4 | K I | L ~ / M2dx,

and this leads to the conclusion (5.20).

We illustrate the application of the zero-dissipation limit results obtained here for the équation in gênerai
form in the context of several well-known wave models. We start with the generalized KdV-Burgers équation

ut + ux + upux — vuxx + uxxx = 0.

In this example, the symbols of the operators are a(£) = (3(£) = £2. The exponents X = fi = ry = a = 2 satisfy
the assumptions of Theorems 5.5 and 5.6. If p < 2(A + 7 — er) = 4, u$ G Hl and VQ G Hl, then by Theorem 5.5

If further VQ G H2, then Theorem 5.6 indicates

where v is the solution of the corresponding équation without the dissipative term. This reproduces part of the
results in Section 4.

Attention is now turned to the version of these types of wave équations originally proposed by Ott & Sudan [29]
and Ostrovsky [28]. They have the form

ut + vPux + uxxx + -p.v. r ^^-dy = 0 (5.21)
TT « / - o c x - y

ut + upux + uxxx + VU + V I / Uy(y,£)dy = 0, (5.22)

and

respectively. These two équations with p = 1 describe ion-acoustic waves in a plasma with Landau damping.
The symbols of the operators are a(£) = £? and /3(0 = |£| for (5.21) and a ( 0 = ^2 and /3(C) = 1 + ^/W\
for (5.22).
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The growth exponents are À = JA = 2, 7 — a = 1 for (5.21) and À — /i = 2, 7 = 0- — 1/2 for (5.22). These
fall within the range of applicability of Theorems 5.5 and 5.6. That means, if p < 4, u0 G H1 and VQ G H1,
then the solution of (5.21) or (5.22) with initial data UQ converges in L2 to the solution of the corresponding
équation without dissipation.

vt + vpvx + vxxx = 0, v(-, 0) = vo(-),
and the convergence rate is of order v 2. If further vQ e H2, the estimate for convergence rate may be improved
to order ÏA
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