Stabilization of Galerkin approximations of transport equations by subgrid modeling
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 6, pp. 1293-1316.
@article{M2AN_1999__33_6_1293_0,
     author = {Guermond, Jean-Luc},
     title = {Stabilization of {Galerkin} approximations of transport equations by subgrid modeling},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1293--1316},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {6},
     year = {1999},
     mrnumber = {1736900},
     zbl = {0946.65112},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_6_1293_0/}
}
TY  - JOUR
AU  - Guermond, Jean-Luc
TI  - Stabilization of Galerkin approximations of transport equations by subgrid modeling
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 1293
EP  - 1316
VL  - 33
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_1999__33_6_1293_0/
LA  - en
ID  - M2AN_1999__33_6_1293_0
ER  - 
%0 Journal Article
%A Guermond, Jean-Luc
%T Stabilization of Galerkin approximations of transport equations by subgrid modeling
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 1293-1316
%V 33
%N 6
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_1999__33_6_1293_0/
%G en
%F M2AN_1999__33_6_1293_0
Guermond, Jean-Luc. Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 6, pp. 1293-1316. http://www.numdam.org/item/M2AN_1999__33_6_1293_0/

[1] A. A. O. Ammi and M. Maron, Nonlinear Galerkin methods and mixed finite elements : two-grid algorithms for the Navier-Stokes equations Numer. Math. 68 (1994) 189-213. | MR | Zbl

[2] D. N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations Calcolo 21 (1984) 337-344. | MR | Zbl

[3] P. Azerad and G. Pousin, Inégalité de Poincaré courbe pour le traitement variationnel de l'équation de transport C. R.Acad.Sci. Paris Sér. I 322 (1996) 721-727. | MR | Zbl

[4] C. Baiocchi, F. Brezzi and L. P. Franca, Virtual bubbles and Galerkin-least-square type methods (Ga. L. S.) Comput. Methods Appl. Mech. Engrg 105 (1993) 125-141. | MR | Zbl

[5] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels, théorèmes d'approximation, application à l'équation de transport Ann. Sci. École Norm. Sup. Sér. IV 3 (1970) 185-233. | Numdam | MR | Zbl

[6] M. Barton-Smith, Mémoire de DEA. Analyse Numérique, Paris XI, Internal report LIMSI (1999).

[7] F. Brezzi, M. O. Bristeau, L. Franca, M. Mallet and G. Rogé, Relationship between stabihzed finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Engrg. 96 (1992) 117-129. | MR | Zbl

[8] A. N. Brooks and T. J. R. Hughes, Streamline Upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations Comput. Methods. Appl. Mech. Engrg 32 (1982) 199-259. | MR | Zbl

[9] M. Crouzeix and P. -A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations RAIRO Anal. Numér 7 (1973) 33-76. | Numdam | MR | Zbl

[10] R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equations. Comput. Methods Appl. Mech. Engrg. 156 (1997) 185-210. | MR | Zbl

[11] J. Douglas and T. F. Russell, Numerical methods for convection dominated diffusion problems based on combinig the method of characteristics with finite element methods or finite difference method SIAM J. Numer. Anal. 19 (1982) 871-885. | MR | Zbl

[12] R. Dautray and J. -L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques Masson, Paris (1984). | Zbl

[13] C. Foias, O. P. Manley and R. Temam Modelization of the interaction of small and large eddies in two dimensional turbulent flows, Math. Modelling Numer. Anal. 22 (1988) 93-114. | Numdam | Zbl

[14] M. Fortin, An analysis of the convergence of mixed Finite Element Methods RAIRO Anal. Numér. 11 (1977) 341-354. | Numdam | MR | Zbl

[15] L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods Comput. Methods Appl. Mech. Engrg. 123 (1994) 299-308. | MR | Zbl

[16] M. Germano, U. Piomelh, P. Moin and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model Phys. Fluids A 3 (1991) 1760-1765. | Zbl

[17] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations Springer Ser. Comput Math. 5, Springer-Verlag (1986). | MR | Zbl

[18] J. -L. Guermond, Stabilisation par viscosité de sous-maille pour l'approximation de Galerkin des opérateurs monotones C. R. Acad. Sci. Paris Sér. I 328 (1999) 617-622. | MR | Zbl

[19] T. J. R. Hughes, Multiscale phenomena Green's function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations Comput. Methods Appl. Mech. Engrg. 127 (1995) 387-401. | MR | Zbl

[20] C. Johnson, U. Navert, J. Pitkaranta, Finite element methods for linear hyperbolic equations Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312. | MR | Zbl

[21] O. A. Ladyzhenskaya, Modification of the Navier-Stokes equations for large velocity gradients Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory, Consultants bureau, New-York (1970).

[22] M. Manon and R. Temam, Nonlinear Galerkin methods : the finite element case Numer. Math. 57 (1990) 1-22. | MR | Zbl

[23] T. E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal 28 (1991) 133-140. | MR | Zbl

[24] O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier Stokes equations. Numer. Math. 38 (1982) 309-332. | MR | Zbl

[25] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer Ser. Comput. Math. 23, Springer-Verlag (1994). | MR | Zbl

[26] J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiments. J. Atmospheric Sei. 2 (1963) 680-689.

[27] E. Süli, Convergence and non-linear stability of the Lagrange-Galerkin method for the Navier-Stokes equations Numer, Math. 3 (1988) 459-483. | MR | Zbl

[28] B. García-Archilla, J. Novo and E. S. Titi, Postprocessing the Galerkin method : a novel approach to Approximate Inertial Manifolds. SIAM J. Numer. Anal. 35 (1998) 941-972. | MR | Zbl

[29] G. Zhou, How accurate is the streamline diffusion finite element method ? Math. Comp. 66 (1997) 31-44. | MR | Zbl