@article{M2AN_1999__33_6_1187_0, author = {Carstensen, Carsten}, title = {Quasi-interpolation and a posteriori error analysis in finite element methods}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1187--1202}, publisher = {EDP-Sciences}, volume = {33}, number = {6}, year = {1999}, mrnumber = {1736895}, zbl = {0948.65113}, language = {en}, url = {http://www.numdam.org/item/M2AN_1999__33_6_1187_0/} }
TY - JOUR AU - Carstensen, Carsten TI - Quasi-interpolation and a posteriori error analysis in finite element methods JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 1187 EP - 1202 VL - 33 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_6_1187_0/ LA - en ID - M2AN_1999__33_6_1187_0 ER -
%0 Journal Article %A Carstensen, Carsten %T Quasi-interpolation and a posteriori error analysis in finite element methods %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 1187-1202 %V 33 %N 6 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_1999__33_6_1187_0/ %G en %F M2AN_1999__33_6_1187_0
Carstensen, Carsten. Quasi-interpolation and a posteriori error analysis in finite element methods. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 6, pp. 1187-1202. http://www.numdam.org/item/M2AN_1999__33_6_1187_0/
[1] Error estimators for a mixed method. Numer. Math. 74 (1996) 385-395. | MR | Zbl
,[2] Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978). | MR | Zbl
and ,[3] A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4 (1996) 237-264. | MR | Zbl
and ,[4] Finite Eléments. Cambridge University Press (1997). | MR | Zbl
,[5] A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2444. | MR | Zbl
and ,[6] The Mathematical Theory of Finite Element Methods. Texts Appl. Math. 15, Springer, New-York (1994). | MR | Zbl
and ,[7] Mixed and hybrid finite element methods. Springer-Verlag (1991). | MR | Zbl
and ,[8] A posteriori error estimate for themixed finite element method. Math. Comp. 66 (1997) 465-476. | MR | Zbl
,[9] Constants in Clément-interpolation error and residual based a posteriori error estimates in Finite Element Methods. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 97-11, Christian-Albrechts-Universitât zu Kiel, Kiel (1997). | Zbl
and ,[10] Fully reliable localised error control in the FEM. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 97-12, Christian-Albrechts-Universität zu Kiel, Kiel (1997). | Zbl
and ,[11] Edge residuals dominate a posteriori error estimates for low order finite element methods. Berichtsreihe des Mathematischen Seminars Kiel, Technical report 97-6, Christian-Albrechts-Universität zu Kiel; SIAM J.Numer. Anal. (to be published). | Zbl
and ,[12] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | MR | Zbl
,[13] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[14] A posteriori error estimators for nonconforming finite element methods. Math.Modelling Numer. Anal. 30 (1996) 385-400. | Numdam | MR | Zbl
, , and ,[15] Introduction to adaptive methods for differential equations. Acta Numer.4 (1995) 105-158. | MR | Zbl
, , and ,[16] Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986). | MR | Zbl
and ,[17] Element-orientated and edge-orientated local error estimates for nonconforming finite element methods. Math. Modelling Numer. Anal. 30 (1996) 237-263. | Numdam | MR | Zbl
and ,[18] Theory and Numerical Analysis of the Navier-Stokes Equations. North-Holland (1977). | MR | Zbl
,[19] A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996). | Zbl
,[20] Adaptive Multilevel-Finite-Elemente Methoden zur Lösung elliptischer Randwertprobleme. Ph.D. thesis, Math. Inst., TU München (1995). | Zbl
,[21] Asymptotically exact a posteriori error estimators for elements of bi-odd degree. Chinese J. Numer. Math. Appl. 13(1991) 64-78. | MR | Zbl
,[22] Asymptotically exact a posteriori error estimator for elements of bi-even degree. Chinese J. Numer. Math. Appl. 13 (1991) 82-90. | MR | Zbl
,