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QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS
IN FINITE ELEMENT METHODS

CARSTEN CARSTENSEN1

Abstract. One of the main tools in the proof of residual-based a posteriori error estimâtes is a quasi-
interpolation operator due to Clément. We modify this operator in the setting of a partition of unity
with the effect that the approximation error has a local average zero. This results in a new residual-
based a posteriori error estimate with a volume contribution which is smaller than in the standard
estimate. For an elliptic model problem, we discuss applications to conforming, nonconforming and
mixed finit e element methods.
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1. INTRODUCTION

For a brief présentation of the quasi-interpolation operator % in a simplified setting, let us suppose in this
introduction that T is a regular triangulation of a bounded Lipschitz domain O with a polygonal boundary F in
the plane. To indicate the improvements over [11], let us assume that T consists of triangles and parallelograms
and that F is split into a closed part TD of positive length for homogeneous Dirichlet boundary conditions and
a remaining, possibly empty, part FJV := F \ TD> Let M dénote the set of all nodes {i.e. the vertices of the
éléments) while JC := J\f\ To dénotes the set of free nodes.

For any node z E .Af, let tpz be the corresponding hat-function defined as the discrete function in the finite
element space (excluding boundary conditions) that takes the value 1 at the node z but vanishes at all other
nodes. Hence, {(fz\z € K) is the nodal basis of the finite element space (including the homogeneous boundary
conditions on Fp).

The family (<pz\z € Af) is a partition of unity and this motivâtes our examination of arbitrary Lipschitz
partitions of unity; the results then cover a large class of finite element methods, e.g., isoparametric finite
éléments, higher order éléments in higher dimensions, or hanging nodes.

To define the quasi-interpolation operator X in the aforementioned two-dimensional setting, set ip := J^zeK; *Pz

and, given any ƒ G Ll(ÇL), define

*<Pz ïovfz:=^^t {ze)q, (LI)

Keywords and phrases. A posteriori error estimâtes, adaptive algorithm, reliability5 mixed finite element method} nonconforming
finite element method.
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1188 C. CARSTENSEN

where (•,•) dénotes the inner product in L2(Q). The error ƒ — Xf has a vanishing weighted average, z.e., for
f,g G L2(Q) and arbitrary gz G R, z G /C, there holds

^ ) (1.2)

As main conséquences, one deduces the approximation and stability properties

1/2, (1.3)

<C| |V/ | | L 2 ( n ) . (1.4)

The T-piecewise constant weight h<r is the elementwise mesh-size, h-r = diam (T) on T G T, hz dénotes the
diameter of the patch u>z := U{T G T\z G T} of z G /C, and the positive constant C is independent of ƒ, <?, /ir
and dépends only on the shapes of the éléments in T. The improvement over the Clément operator is that gz

allows a local réduction in (1.3). The disadvantage is that only linear convergence is provided through (1.4),
while, for ƒ G H2(Q), the Clément quasi-interpolant is of second order.

One motivation for the above quasi-interpolation operator X was the question of dominating edge-contributions
which is eventually solved by the results of this paper for arbitrary regular but unstructured meshes. It has
been a conjecture in the engineering community for a long time that it sufHces in residual-based error control
to focus on the edge contributions such as a jump of the discrete stress along inner element edges.

For a very special mesh, Yu proved that the edge-contributions dominate the residual based standard a pos-
teriori error estimâtes for piecewise polynomials of odd degree [21,22]. For unstructured grids, it was later
shown in [11] that the volume contributions can be replaced by a term which is generically of higher order. For
arbitrary meshes and wit h Dirichlet conditions, the results of this paper provide the estimate

(1.5)
e/c

for the exact solution u G HQ(ÇÏ) of a model problem Au + ƒ = 0 with Galerkin solution U, The improvement
over the standard error estimate is that Rz is arbitrary in (1.5) (and vanishes in the standard estimate) and
so lowers the volume terms in (1.5). To see this, suppose U is T-piecewise affine such that the T-piecewise
Laplacian ATU vanishes. Then [| ƒ -f Aj-U — RzW^zr^ \ is of higher order owing to a proper choice of Rz. If ƒ
is smooth, a Poincaré inequality shows

r i 1 / 2

\\u-U\\wi*{U) <C \YshE\\{dU/dnE}\\2
L,{E) \ +C| | /£V/ | | L 2 ( n ) , (1.6)

J
where the last term is of higher order. The remaining edge-contributions IKöL^/onjs;]!!^^) describe the jump
of the discrete stress VU across the inner element edge E in normal direction UE\ S dénotes the set of all edges.

For nonconforming and mixed finite element methods, a similar technique shows that the volume contributions
in the estimate can be sharpened. It is stressed that the improvements apply to any situation which usually
Clément's paper [12] is quoted in, and so is useful for any (non-linear) partial differential équation in divergence
form; cf. [2-5,15,17,19].

The remaining part of the paper is organised as follows. A much more gênerai setting for a Lipschitz partition
of unity and the proposed interpolation operator are introduced in Section 2. lts approximation and stability
properties are stated in Section 3 and proved in Section 4. To illustrate the standard setting the genera! frame is
applied to, we specify the resulting sharpened a posteriori error estimate, first for conform piecewise polynomial
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finite element methods in Section 5, for nonconforming finite element methods such as Crouzeix-Raviart finite
éléments in Section 6, and finally for mixed finite éléments in Section 7.

2. WEAK INTERPOLATION OF LIPSCHITZ PARTITIONS OF UNITY

Suppose that KL Ç M are finite (index) sets, and (ipz\z G A/*) is a Lipschitz partition of unity on S7, i.e.

z = l on îî, (2.1)

0 < <pz, (pz Lipschitz continuous on Çl (zG J\f) (2-2)

with Lipschitz constant Lip((pz). We assume that cpz is not identical zero such that

LÜZ := {x e n\ipz(x) > 0} (z e J\f) (2.3)

is non-void. We are interested in an interpolation operator

I:L\Ü) -><S, (2.4)

where the linear space S Ç WliOO(Q) involves only (some) Lipschitz functions of the family (ipz\z £ A/"), namely

5 := sp&n{tpz\z G K,} • (2*5)

Remark 2.1. The interprétation of /C ̂  M is that some of the functions (fz do not satisfy proper side restric-
tions such as (homogeneous) Dirichlet boundary conditions.

Définition 2.1. Set ip := J2zefC Vz, and suppose that ijj > 0 almost everywhere on Q. Then, let

^ := <Pz/$ (z e /C). (2.6)

Remark 2.2. If ip is not strictly positive on Q> we have to reduce Q to Qf := {x e Q\ip(x) > 0}. Note that this
is not a huge restriction, because any (p e S satisfies ip — 0 on Q, \ Q (recall (2.2)). Thus, after we constructed
some Xf ~ (f in S on the restricted domain ft', we may extend <p to Q, by zero o n f i \ Q and so obtain a
reasonable approximation If in S.

Proposition 2.1. (I/JZ\Z G K) is a partition of unity on £2? i.e. ipz is non-negative and continuous with 1 =

T.zeK'&z onQ>-

Proof Since ipz is non-negative, and ail such functions sum up to ^ (according to its définition), we have
1 = Z^ejc ^z almost everywhere on Q. D

Remark 2.3. The functions ipz are not necessarily Lipschitz continuous. For instance, let ipi{x) = x 1 + € /2 ,
(p2(x) = x/27 (p3 = l-(pi-ip2for0<x<l and 0 < e < 1. If K = {1, 2 } , then ifa(x) = 1/(1 + xe), and so
^(a;) = -ea;e~1/(l + a:6)2 is unbounded if 0 < e <C 1.

Définition 2.2. Define I : L1^)-> S via

where (-, •) dénotes the inner product in L2(fl).
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Remark 2.4. The main orthogonality property mentioned in the abstract and the introduction is a simple
conséquence of the construction, namely, for R,u G L2(Q), we have

/ R(u - Xu)dx = Y] /
Jn Zlr-Jn

- uz ip)dx, (2.8)

where Rz G M is arbitrary, while uz :— (u,ipz)/(l,(pz).

Proof of (2.8). Recall that ($>z\z G K) is a partition of unity. Thus,

/ R(u — lu)dx = / R \ Y^ wèz — V^ it<: c

= V\ ! R{u- uziP)ifjzdx = J2 f(R- Rz)(u - uziP)ii>z dx (2.9)
i/o Vo

because, owing to (2.6) and the définition of uz,

ƒ (n - n^t/;)^ dx = 0. (2.10)
Ja

D

3. STABILITY AND APPROXIMATION PROPERTIES

To include Dirichlet conditions, let Ü b e a bounded Lipschitz domain in W1 with boundary 90, and assume
that there is some relat ively closed part Y o of dQ, such that the space (2.5) satisfies

S := sv&n{pz\zeK:}ÇWÙP(n):={ueW1>p(ty\u\rD=O}, (3.1)
K := {ze N\<pz G W^P(Q)}- (3.2)

Theorem 3.1. Adopt notation front Section 2 and 3 for 1 < p, q < oo; 1/p + 1/q = 1. Then, there exists a
constant C > 0 that dépends only on Q,,YD,P and the shape of the supports (UJZ\Z G JC), as well as on the shapes

of ( uzUuç\Ç G Af\K,j z EK, uzr\u>ç ^ 0 with ip ̂  1 on UJZ) , the shape coefficients ( J ^ ^zdx/meas (coz)\z G /C J,
and on the overlap

Mi := esssupcard{z G Af\<pz(x) > 0}, (3.3)

M2 := maxcard{zG JC\wznu;ç ^ 0, (£j\f\JC}, (3.4)

\t not on their sizes hz := diam^^); such that the following holds.
1. For all u G W^p{0), R G Lq(Q), and arbitrary Rz G E, z G /C; there

f R{u - lu)dX < C || V«||L „ f T h* f * |« - E |«d*ï1/? (3 5)

2. For o/Z u e V7^p(n) ttere /loZds

^(n)<C||V«|Up (n), (3-6)
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where h(x) := max{hz\tpz(x) > 0, z G JC}.
3. There exists a constant c > 0 t/iat further dépends on maxz6j/v ^ Lip(^z) such that, for all u G WpP(Q),

\\VIu\\LP{Q) <c||V«|Up(n). (3.7)

It will be clear in Section 5, that Theorem 3.1 yields an estimate for the volumetric part of the residuals in the
finite element analysis. To estimate edge contributions, we state a simple conséquence in a gênerai framework,
which will be convenient in Sections 5-7.

Let S be a finite union of Lipschitz surfaces, such that

S C u <9T, (3.8)
" Ter ' v }

where T is a finite set of pairwise disjoint, non-void Lipschitz domains in Q>.

Theorem 3.2. There exists a constant C > 0 that dépends on the constants in (3.6-3.7), on

M3 := esssupxen{/i(£)//iT|a; eT €T}, (3.9)

and on the shape of the domains in T, but not on their sizes such that, for ail J e Lq(S) and all u G W^iQ),
Kp,q<oo,

r (
J(u- Xu)ds < C H V«||Lp(n)

V/q

\T£T

The main results in Theorem 3.1 and 3.2 are applied in the following form.

Corollary 3.1. There exists a constant C > 0 that dépends on the constants in (3.6, 3.7, 3.10), such that

f f fv^ , v- V"
ƒ R(u — lu)dx + ƒ J(u — lu)ds < C\\Vu\\Lp(fy < ^ hq

z\\R — RzW^^ \ + 2_^ ^W^WL^CSHÔT) f (^-ü)

Jn Js [ze)C
 z

 Ter J

holds for all J £ Lq(S), R e Lq(fL), u £ W^P(Q), and arbitrary Rz eR for z eJC.

4. PROOFS
In the proof of point 1 of Theorem 3.1, we are given R G Lq(Q) and u G W^P{Q), start as in (2.9), and

obtain with Hölder's inequality
/ R(u-Xu)dx= V / (R-Rz)ipz(u-uzi))dx

Jn zeJC Jn

<[Y\hq
zipz\R~ Rz\

Qdx \Y]h7P ipz\u- uztp\pdx . (4.1)
\,^jr Jn I \^ir J& J

Fix z G /C and consider jni)z\u — uztp\pdx. In the first case we assume i(;z = (pZi Le. ij) = 1 on u2. Then,
according to a Poincaré inequality, we claim the existence of a constant cz with

ƒ |«- i i , | pda;<c,^ | |Vt t | |^ p ( U i ) . (4.2)
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We prove (4.2) by an indirect argument. If (4.2) was false, we could find a séquence (UJ) in WljV{uz) with
JL, \U3 ~ U3z\pd% — 1 &nd llVtijH^p^) < l/j. Hence, (UJ) is bounded in WliP(u;z), has a weakly converging
subsequence (u&) which, according to compactness, is strongly convergent in LP(ÜJZ). Since (uk) and (Vufc)
converge strongly in Lp(u)z)} we conclude that (uk) converges strongly to some u in WliP(u)z). Since || V * ||LP(WS)

is lower semi-continuous, Vu = 0, whence u is constant. The séquence {UJZ) is convergent to uz = (u,ïjjz)/(l,(pz),
which equals the constant u because ipz = <pz. Thus, (uk — Ukz) converges to zero in LP{UJZ), which contradicts
\\uk—v>k3\\LP(U>Z) — 1- This proves (4.2) in the first case. A simple scaling argument shows that cz is independent
of hz := diam(u;z).

In the second case, we assume that ^ 1 on LÜZ. According to (2.1), there exists Ç G j\f\K with (pç ̂  0
on CÜZ. By (3.2), (pç > 0 on some part of T& with positive surface measure. Therefore, io :— coz U a;̂  is open,
connected, and duo n F^ =: 7^ has positive surface measure. Thus there exists a Friedrichs' inequality for all
u e W£P(O), namely

Ju)
u\pdx < czXhp\\Vu\\lP{uj) (u e W^(LJ))3 (4.3)

where W^^UJ) — {u E W1)P(o;)|ti = 0 on 7D}- A scaling argument again shows that the constant cz£ in (4.3)
is independent of the size of u, but dépends on its shape. (Note that hz := diam (DZ) is not the size of u, but
diaxn.(uj)/hz dépends on the shape of co and LÜZ only.) With Hölder's inequality, (a + b)p < 2plq{ap •+- ff) for
a, b > 0, we have

f ipz\u- uztp\pdx < 2p/q f \u\pdx + 2p/q f tpz\uz\
piljpdx. (4.4)

Ja Ju)z Ju

According to uz := (u,ipz)/(l,<pz), (2.6), and Hölder's inequality,

f rpztl^\uz\
pdx - f iPziT^dxliu^W/^v,)*

< H^ll^(^) UA\l^z) (l.Vz)1-" < (measCwJ/a,^))"-1 ||«||^(ü;i). (4.5)

Let C i , . . . , Ce dénote size-independent constants which depend only on the quantities and shapes mentioned
in the theorem. Then, from (4.2-4.5), we conclude in all cases

f i>z\u - uz^àx < CifcS||Vii||k((<)iUuc) (4-6)
J Cl

for all z e KL and possibly some £ = £(z) € AT \ /C associated with z, such that CJ — LJZ U a;̂ . This implies

< ex j ; i iV t t | i ^ p ( W i }
c

= Ci f |Vu(a;)|pcar<i{ze/C|a;€a;zUa;c(z)}da:< C2 ||Vu||^p(n). (4.7)
J Çl

(In the last estimate, we used (3.3, 3.4) to infer C2 < Ci(Mx + M2).) From (4.7, 4.1) we obtain (3.5).
To prove 2 of Theorem 3.1, we consider R = sign (u — Tu)/h in the first part; signz; := v/\v\ if \v\ > 0, and

signO := 0. Choose Rz = 0 and consider the right-hand side in (3.5). Since \R\ < l/h, we obtain

hl f ijjz\R\qdx < f ^2{hz/h)qipzdx < 1 (4.8)
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and conclude (3.6).

To verify (3.7), we employ (2.1) and obtain 0 = J2z&j^^<pz almost everywhere in Q. Therefore, if uz := 0
for z e JV*\/C and uz := (ipZyu)/(ipZJl) for zG/C,

= f \^2(uz-u(x))V<pz(x)\pàx (4.9)

\uz-u(x)\pUp(<pzfdx.

In the last estimate we noticed that, for almost ail x in f2, ̂ 7ipz{x) ^ 0 for at most M\ parameters z in TV, so
that we could apply Hölder's inequality in MMl. (In (4.9), Lip (ipz) dénotes the Lipschitz constant of ipz.) In
case z € K and y>z = I/JZ> (4.2) yields

| ^ ( ^ r (4.10)

In case that z e JC and y?z ^ ^ z , we argue as in (4.4-4.6) and obtain

f |u,-«rdx<C3/»;||V«||^(Uï (z)). (4.11)

(Note that now there is a factor t/jz missing, which leads to a slight modification and so a different constant
C3.) It remains the case z eAf, where uz = 0 and z 0 /C, Le. <pz > 0 on some part of T& with positive surface
measure. As in (4.3), we infer from Friedrichs' inequality that

/ l M (4.12)

Prom (4,9-4.12) we dérive

Y: . (4.13)

(Hère, Ç(z) is given in (4.11), and Ç(z) = z in (4.10, 4.12).) Let C6 := maxeejf hzLip((pz). Then (4.13) yields

\\VIu\\lP{Q) < C,Cl J2 l lVtill^^w)- (4.14)

In the last step we argue as in (4.7), and employ (3.3, 3.4) to conclude (3.7). •

In order to prove Theorem 3.2, we quote a trace theorem which is utilised frequently in the liter at ure (e. g.,
in [6,9,12]). A proof is sketched only for completeness.

Proposition 4.1. If uj is a bounded Lipschitz domain, then there exists a constant C(UJ) which dépends only on
the shape of the domain UJ but not on its size diam (o;), such that, for all ƒ E WlyP(cü),

( ) ) * ' - 1 } • (4.15)

Proof. According to trace inequalities in Sobolev spaces, we have
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for w-depending constants C(LJ). TO see that C(UJ) is diam (u;)-independent, we employ a scaling argument and ver-
ify that || ƒ ||£,P(aw), II/|Up(w)/diam(cj)1/p and | |V/ | | L P ( W ) d i am^) 1 " 1 ^ scale with a joint factor diam (o;) t ^ 1 ^ .
From this we conclude the assertion. D

Proof of Theorem 3.2. Let us write hz :~ diam (CJZ), z E JV, and HT •= diam(T), T £ T. According to (3.8),
we have

f J{u-Tu)às<Yl f \J\\u-lu\ds, (4.17)
Js TeTJsndT

and with Hölder's inequality and (4.15)

f J(u-lu)ds < 2*'« Yl <T)WJ\\L«{SndT) (h~1/p\\u-lu\\LP(T) + hXf1/p\\V(u - lu)\\LP{T))

l ( S n a T ) ) ( ^ 2 ( ( ) H ) ) ) . (4.18)
V r e r V

From (3.6, 3.7, 3.9) we conclude

||« -Tu\\LP(T)lhT + ||.V(u - lu)\\Lr{T))
p

Ter
{M3\\h-l(u-Iu)\\LP{T)^\\V(u~Iu)\\LP{T))

P

( ) IIV«||^p(n). (4.19)
Ter

(In the last identity, we used that UT Ç ft without any overlap.) From (4.18, 4.19) we obtain (3.10). D

Remark 4.1. The main improvement over [11] is that volume contributions near the Dirichlet boundary are,
compared to the remaining parts, not treated differently.

5. APPLICATION TO CONFORM FINITE ELEMENT METHODS

In this section, we focus on finite element methods that include Pi- and Qi-finite éléments which are con-
tinuous and satisfy homogeneous Dirichlet boundary conditions on T& exactly. To describe the discrete space
S Ç Wjjp(Q), we firstly recall the définition of a regular triangulation in the sense of Ciarlet [6,13].

Définition 5.1 (Regular triangulation). A regular triangulation T of the bounded Lipschitz domain ft Ç Mrf,
d = 1,2,3, with piecewise affine Lipschitz boundary F = dü = F^UFAT, consists of a finite number of closed
subsets of f£, that cover f2 = UT. Each element T eT includes an open bail B(x,r) Ç T with maximal positive
radius r — PT around some x, and is either an interval T — conv{a,6} if d — 1, a triangle T — conv{a, 6, c}
or a parallelogram T = conv {a, 6, c, d} if d — 2, or a tetrahedron T = conv {a, 6, c, d} or a parallelepiped
T = conv {a, 6, c, d, e, ƒ, g, h} if d = 3. The extremal points a,... , h are called vertices, and the faces E Ç dT
such as E = a if d = 1, E = conv {a, b} if d = 2, or E = conv {a, b, c} resp. a parallelogram conv {a, i>, c, d} if
d — 3 are called edges. The set of ail vertices and ail edges appearing for some T in T are denoted as M and £.
Two distinct and intersecting T\ and T^ share either an entire edge, an interval or a vertex. Each edge E E £
on the boundary F belongs either to F^ or to FJV- Finally, K := J\f \ T& dénotes the set of free nodes.

The lowest order conform finite element space with respect to T is denoted as S.
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Définition 5.2 (S,SD). For T G T, let PT := Pi(T) if d = 1, or if T is a triangle and d = 2, or if T is a
tetrahedron and d = 3; let Px •= QiCO if T is a parallelogram and d = 2, or a parallelepiped and d = 3.
Hère, Vu{K) [resp. Qfc(-K")] dénotes the set of algebraic polynomials in d variables on i^ of total [resp. partial]
degree < A:. The (nonconforming) discrete space C\(T) is the set of ail U G L°°(Q) with restrictions in Pr, ie.,
t/|T G PT for ail T in T. Then, let 5 := £X(T) n W ^ f î ) and <SD := A(T) H w£p(fi). For each z G A/", let ^
dénote the discrete fonction in S that satisfies ^ ( x ) = 0 if x G Af\ {z} and ¥>*(z) = 1; (<pz\z £ £) is the nodal
basis of SD -

To illustrate the estimâtes of Section 3, suppose that we aim to approximate an unknown stress field a G
Lq(Ü)d that satisfies

div cr + ƒ = 0 inîî, (5.1)

a • n = g on F^, (5-2)

for some given ƒ G Lq(ft) and g G L9(F;v)- (In (5.1), diva is the distributional divergence which, by (5.1), is
regular and then, (5.2) can be defined in a weak form via intégration by parts formulae.) The weak form of
(5.1, 5.2) is obtained straight forwardly by applying an intégration by parts, and we suppose that we calculated
some Ti G Lq(Çl) that satisfies the weak form of (5.1, 5.2) for ail test fonctions in <SD, le., we suppose we are
given E with

/ £ - W d z = / / V d x + [ gVds (V G SD) (5.3)

and E|r E WliP(T)d for each T G T. We regard E as an equilibrium approximation to a and obtain an
a posteriori error estimate for

||div (a - E)||wi.P (n). := sup / (a - S) - VWdx/\\VW\\LHQ). (5.4)

To describe the computable upper bound, we define J G Lq(\J£) for each edge E G £ by

{ (E|T2 - £|Tl)'7tE if E = T2 n Ti 2 F,

0 - £ | T l - n i f S C f j v n T x , (5.5)

0 i f E Ç F D .
In the first case, Ti,T2 G T share the edge E with unit normal n^ on £?, which is the outer normal of Xi, in
the second case E is an edge of T\ on the boundary FAT, where n dénotes the outer unit normal. Finally, let
HT := diam(T) for T ET, JIE := diam(.E) for E E £, and /i2 := diam(o;z) for z € Af. Let divr dénote the
T-piecewise divergence, e.<?., (divrS)|T := div(E|r) for all T ET.
Theorem 5.1. There exists a constant C > 0 which dépends on maxyer hr/pr, f̂  a^d F^ suc/i t/iat, /or ail
Rz ER, z E JC, we have

r V/q

||div (a - E) | | w i . p ( n ) . < C \ ^ hq\\f + d i v r S - R,\\q
LHua) + ̂  ^ | | J | I L ( S ) > • (5.6)

Proof of Theorem 5.1. By intégration by parts, we obtain from (5.1-5.3) that

[ {a-E)-Vwdx = [ (a-E)-V(w-lw)dx (5.7)
Jçi Jn

= / R(w-Iw)dx+ / J(w-Xw)dsi
Jn J\j£
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FIGURE 1. Fine (in thin lines) and shape-regular coarse triangulation T (in thick lines)

where R := ƒ + divrE, and J is given in (5.5). Thus, (5.6) is a direct conséquence of (5.7) and Corollary 3.1. D

Remarks 5.1.

1. The estimate (5.6) yields error estimâtes for the displacement fields if we suppose a smooth uniformly
monotonous stress strain relation, Le., if there is a smooth A : W^P(Q) —» Lg(Q)d with

a\\u — v (u) - A(v)) - (Vu - Vv)dx (u, v e W^1

Then, if a := A(u) and E := A(U), we obtain

a\\u~u\\w^p{n) ^

< ||div ( a - E) | | w i ) P ( n ) + \\u-'

and whence, according to (5.6), an a posteriori error estimate

(5.8)

(5.9)

n« - E (5.10)

From the above arguments we deduce the a posteriori error estimate (1.5) discussed in the introduction,
2. Reverse inequalities hold under some regularity conditions on the data, see [19].
3. Although Theorem 5,1 is formulated for scalar problems only, it applies straight forwardly componentwise

to vectorial problems such as problems in linear and (partly) nonlinear elasticity.
4. It is stressed that we only need (5.3) to hold for the lowest order conform space SD« Of course the test

finite element space may be much larger, and so our analysis includes hp-versions of the finite element
method as well.

5. For thin and long éléments (d > 2), the constant C in Theorem 5.1 is expected to deteriorate [9,10].
It is stressed that we only need a shape-regular triangulation for the partition of unity, and so the fine
triangulation may include very thin and relatively long éléments on the price of error information on the
coarse grid only. This situation is depicted in Figure 1, where a fine mesh is used near an edge singularity,
while the coarse mesh (described by thick lines in Fig. 1) indicates the triangulation T, to which (5.3)
and thus (5.6) applies.
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6. Hanging nodes may be included in the analysis^ since there exists a partition of unity in this case as well.
7. Finally, isoparametric finite element methods can be treated similarly. The analysis is straight forward.

However, in practise, isoparametric éléments are utilised for curved boundaries and so the triangulation
does not exactly match the boundary. This causes further difficulties that lie beyond the scope of this
paper.

8. The assertion justifies, to some extend, the averaging technique for a posteriori error control (cf. [3] for a
similar statement and [19] for averaging estimâtes).

6. APPLICATION TO NONCONFORMING FINITE ELEMENT METHODS

In this section, we consider a linear model problem with the exact solution u G HQ (Cl) of

a = AVu and diva + ƒ = 0 in fi. (6.1)

The linear and bounded operator A : L2(CÏ)2 —• L2(Cl)2 is supposed to be self-adjoint and uniformly elliptic,
and we are given ƒ G L2(fi).

For a simple notation, we describe the two-dimensional situation only and suppose the nonconforming
Galerkin solution U belongs to

SNC ••= <u€H},(T)\\/Ee£, [U]ds = O}, (6.2)
[ iiB\rD J

HD(T) := { u € L 2 ( n ) | D r u e L 2 ( n ) a n d V £ ? e £ , ƒ uds = o i , (6.3)

where, for each edge E G £ , [U] dénotes the jump across E, i.en

{U\T2 - U\TI)\E « E = T2 H Tx,

t / Is II £/ Ç 1 £> U 1 AT-

(In the first case, T±^T2 £T and U\T3 is the restriction of U onto Tj, while (C/)^)^ is its trace o n Ê Ç dT3.)
In (6.3), Dr dénotes the T-piecewise gradient, i.e.} (DTU)\T = V(W|T) for each T € T.

Suppose that L̂  G *SATC satisfies div TADTU G L2(fi) and, as part of the Galerkin conditions,

(6.5)f (ADTU) • Wdx = [ fVdx (V e SD).

The following result sharpens [14] (where Rz — 0, z G /C).

Theorem 6*1. There exists a constant C > 0 W/MC& dépends on A, max^er hr/pr, and fi such that, for all
Rz ER, Z G K, we have

\\DT(u~U)\\L2{n) <C \Y,hl\\f + à™TADTU - Rz\\lHuJs)
lzG/C

.1/2

ses J

Here, J is defined through E := ADrU in (5.5) and, [dU/ds] is the jump of the tangential derivatives across
an element edge E where U is extended by zero outside of Cl to define [dU/ds] on T as well
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Remarks 6.1.

1. The assumpticm Su Q SNC is satisfied for triangulations that involve Courant triangles. For parallelo-
grams, S o Q SNC requires higher order polynomials in S^c to guarantee that mixed products (such as
xy) belong to the shape fonctions in SNC (and then include the Q\ finite element).

2. If ADrU is T-piecewise constant, the volume contribution || ƒ + divTADTU — RZ\\%2rWz) *s of higher order,
ie., if ƒ € H1 (SI), we have as in the introduction

f 11/2

\\Dr(u-U)\\LHn) <C ] E ^ ( i i J l ^ ) + i i^/ö s] l iW)) \ + ̂ P r W I U w (6.7)

Thus, the edge contributions generically dominate the a posteriori error estimate.
3. Reverse inequalities hold under some regularity assumptions on the data [14].
4. The assumptions allow a mixture of conforming and nonconforming éléments, and a mixture of triangles

and parallelograms in the plane.
5. Instead of the volume contribution, we could neglect the edge term [Sne] [20]. To see this, suppose that

[SnjB]!^ is constant for each £?, and that there exists VE G H]j(T), such that

/ E • DrVEdx + / div aVEdx = 0 (6.8)
Jn Jn

and JE, VE\Tas = 0 for all E G £ \ {Ef} and T € T, but VE\E = 1 (in particular, VE is continuous at E),
Then, an elementwise intégration by parts shows

/ VE div T(<x - S) dx = f [EnE] ds, (6.9)
Jn JE

because JE, Vsds = 0, and Sn^ is constant. Hence, the constant [En^]|^ satisfies

hE mnE)\\2
L2{E) < hEme&s(üjB) \\f - divr^Wh^y (6.10)

Hère we assumed || VEIIX,*»^) < 1, and UJE = supp VE is a neighbourhood of E. For Crouzeix-Raviart finite
éléments, this shows that the volume residuals dominate the edge terms. Hence, our theorem compléments
this property and states conversely, that the edge terms dominate.

Proof of Theorem 6,1. Set a := AVu and e := u — U. Then, according to (6.5), we have with some ellipticity
constant a of A} for W in SD,

< f {a~T)'DTedx= [ (a - S) • DT(e - W)dx. (6.11)
Jn Jn

To adopt the results in Section 3 we décompose Dr(e — W) G L2(O)2. Let a E HQ (O) dénote the unique (weak)
solution to

div (AVa) = div S in fi (6.12)

and so T := S — A Va satisfies

T>Vr)dx = 0 ( r ? G £



A POSTERIORI ANALYSIS IN FEM 1199

Then we choose W := T(u — a) € SD and recast the right-hand side of (6.11) as

f {a - E) • V(u - a - l{u - a))dx - f (A^T) • (a - S)d:r. (6.14)
Jn Jn

The first term can be rewritten according to an elementwise intégration by parts and then estimated with (3.11).
The calculation is as in (5.7), and so we neglect the details, but stress that the improved estimâtes apply hère.

The second term in (6.14) involves Helmholtz décomposition as in [1,8,14]. Notice that

= min P " 1 ^ - A^Vb\\L,{n) < \\A-V2&-cr)\\LHa). (6.15)

Because T is divergence free in the simply connected domain Q,, there exists a stream fonction (j) E i71(Q) to
T,ie.,T = Curl</> := {d$/dx2, -d$/dxi) [16,18]. This shows

- [ (A~lT) • (a - Z)dx - / DTU -Tdx= [ DrU • Curl^dx. (6.16)
Jçi Jn Jn

For any continuous and piecewise affine $ in H1^) we have, according to an elementwise intégration by parts,

DrU Cm\^dx = ~ [ [f7(Curl^-n£;)]dsî (6.17)
Jus

where [U (Curl<ï> • TÏE)] dénotes the jump of U (Curl<Ê> • ÎIE) across the edge E with canonical modifications at
the boundary. Assume that E € E is an inner edge, E = 7\ n T2 for 7\, T2 G T. Since $ is continuous at E and
can be differentiated along E with a jump [d$/ds] — 0 on each edge. Moreover, because Curl<I> is piecewise
constant, Curl<ï> • UE is constant on E. Hence,

f [U] Curl$ • nEds = Curl^> • nE [ [U}ds = 0. (6.18)
JE JE

Thus, if we define $ := X<p the preceding analysis yields

DrU •Cml$dx = 0. (6.19)/
Jn
/

Jn
Returning to the second term in (6.14), we adopt (6.16) and (6.19) to obtain

- f {A~XT) • (a - S)dx = / DTU • Curl (<p - ®)dx (6.20)
Jn Jn

= - / (0 - $) • [dU/ds]ds.
Jus

With \T\ = \Cm\<f)\ in (6.20), Theorem 3.2 shows

[ \
a lEes

(6.21)

With (6.15) and ||E - a\\L2^ < Lip(A)\\Dre\\L2^, we eventually obtain

||T||L2(n)<Lip(A)||i?Te|U2(n).

Absorbing ||£>re||i/
2(n) concludes the proof of Theorem 6.1. D
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7. APPLICATION TO MIXED FINITE ELEMENT METHODS

In this section, we consider a linear model problem for a mixed formulation to approximate (uy a) E HQ (ft) X
L2(ft)2 that satisfies

a = A Vu and div a -h ƒ = 0 in ft. (7.1)

The linear and bounded operator A : L2(fï)2 —> L2(ft)2 is supposed to be be self-adjoint and uniformly elliptic,
and we are given ƒ G L2(ft). Prom standard mixed finite element methods such as Raviart-Thomas (RT), Brezzi-
Douglas-Marini (BDM), or Brezzi-Douglas-Fortin-Marini (BDFM) éléments (cf. [7] for details), we obtain an
approximation (£/,£) € L2(fï) x H (div; ft) that satisfies

/ = 0 (TeT)y (7.2)
T

f P - Q d z + / UdivQdx = 0 ( Q e M ) . (7.3)

In (7.2), T dénotes a regular triangulation in the sense of Définition 5.1 with nodes Af and a discrete space S
as in Définition 5.2. In (7.3),

M := Curl (S) £ ff (div ; ÎÎ) (7.4)

is supposed to belong to the trial functions. In (7.3), P := A - ï S is assumed to be T-piecewise smooth, such
that Curlr^P e L2(Q)2, and we may define the jump [P] of P across E (ie. [P] = P\T2 - P\TX on E = T2DT1

or [P] = P | T o n T n r ) and the tangent unit vector rE on E, rE • UE ~ 0.

The following result sharpens [1,8] (where Rz = 0, z € /C).

Theorem 7.1. There exists a constant C > 0 which dépends on max hflPT> À , and the simply connectée
TeT

bounded Lipschitz domain ft such that, for all Rz 6 R, z G A/", we

.1/2

+ E MHp] • rfilli»^) [ • (7.5)

Remarks 7.1.

1. For RT, BDM, or BDFM finite éléments on T, the condition (7.4) is satisfied on triangles and tetrahedra.
For rectangles or quadrilaterals, (7.4) holds for higher order ansatz functions.

2. Since the H (div ; Q)- norm is the natural norm for the stress error, the volume contribution h?r\\f +
div S||^2(T\ in (7.5) may be regarded of higher order. Indeed, if E is T-piecewise constant, ||/4-div E | | | 2 m ^

|
( )

3. Reverse inequalities hold under some regularity assumptions on the data [8].
4. A posteriori estimâtes for the displacement error are given in [8].

Proof of Theorem 7.1. Since A is uniformly elliptic, the Lax-Milgram lemma assures the existence of an a G
HQ (ft) that satisfies

f (A Va) • VT7 dx = f (a - E) * V77 dx (rj e Hl (ü)). (7.6)
Jn Ja
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As in the proof of Theorem 6.1 we infer that b € if1(r2)/M exists with

<r -E = A V a - C u r l è . (7.7)

Hence, integrating by parts and by orthogonality of Curl6 to Vu, we obtain

\\A-l/2{a - E)|| |2,m = [ (a - E) - Vaux + [(P-Vu)- CurlödzK J Jn Jn

= f (f + divE)ada;- f b [P] • rE as + f bcm\TPdx (7.8)
Jçi Jus Ja

= dP\/dx2 — dp2/dx{). According to (7.2) and a Poincaré inequality,

(ƒ + divE)adx < | | / + divE| |L 2 ( r ) hTcT ||Va||L2(T), (7.9)

where hx = diam (T) and the constant CT dépends on the shape of the éléments only, in our case, on pr/hr [9].

Let B := 1b e S dénote the weak interpolant to b G Hl($l) (without any boundary conditions). Then,
according to (7.3, 7.4),

0 - [ P.CurlBdx. (7.10)
JQ

From (7.8-7.10) we deduce

^ h r ( / + divE)|U2(n)||Vo]|L2(n)

[P'TE](b- J6)ds+ f cm\TP(b-lb)ds. (7.11)/

The last two terms are (componentwise) exactly of the form analysed in (3.11), and therefore Corollary 3.1
yields the assertion (7.5) if we notice

||Va||L2(Q) + ||V6||L2(n) <c\\A-^2(a - E) | |L a ( n )

with a constant c > 0 which dépends on Q and A. D
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