Numerical approximation of stiff transmission problems by mixed finite element methods
ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 5, pp. 611-629.
@article{M2AN_1998__32_5_611_0,
     author = {Capatina-Papaghiuc, Daniela and Raynaud, Nicolas},
     title = {Numerical approximation of stiff transmission problems by mixed finite element methods},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {611--629},
     publisher = {Elsevier},
     volume = {32},
     number = {5},
     year = {1998},
     mrnumber = {1643477},
     zbl = {0907.73054},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1998__32_5_611_0/}
}
TY  - JOUR
AU  - Capatina-Papaghiuc, Daniela
AU  - Raynaud, Nicolas
TI  - Numerical approximation of stiff transmission problems by mixed finite element methods
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1998
SP  - 611
EP  - 629
VL  - 32
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/item/M2AN_1998__32_5_611_0/
LA  - en
ID  - M2AN_1998__32_5_611_0
ER  - 
%0 Journal Article
%A Capatina-Papaghiuc, Daniela
%A Raynaud, Nicolas
%T Numerical approximation of stiff transmission problems by mixed finite element methods
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1998
%P 611-629
%V 32
%N 5
%I Elsevier
%U http://www.numdam.org/item/M2AN_1998__32_5_611_0/
%G en
%F M2AN_1998__32_5_611_0
Capatina-Papaghiuc, Daniela; Raynaud, Nicolas. Numerical approximation of stiff transmission problems by mixed finite element methods. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 5, pp. 611-629. http://www.numdam.org/item/M2AN_1998__32_5_611_0/

[1] V. Andreev, S. Samarsky (1978) : Méthodes aux différences pour les équations elliptiques, Editions de Moscou. | MR | Zbl

[2] D. N. Arnold (1981): Discretization by finite elements of a model parameter dependent problem, Numer. Math., 37, 405-421. | EuDML | MR | Zbl

[3] D. N. Arnold, F. Brezzi (1985): Mixed and nonconforming finite element methods: implementation, post-processing and error estimates, Mathematical Modelling and Numerical Analysis, 19, 7-32. | EuDML | Numdam | MR | Zbl

[4] I. Babuška, M. Suri (1992): On locking and robustness in the finite element method, SIAM J. Numer. Anal., 29, 1261-1293. | MR | Zbl

[5] A. Bayliss, E. Turkel (1980): Radiation boundary condition for wave-like equations, Comm. on Pure and Appl. Math., 13, 707-726. | MR | Zbl

[6] A. Bendali, K. Lemrabet (1997): The effect of a thin coating of a time-harmonic wave for the Helmholtz equation, SIAM J. of Applied Math. (to appear). | MR | Zbl

[7] A. Bendali, N. Raynaud, J.-M. Thomas (1966): New decomposition of shape function spaces of mixed finite element methods, Applied Mathematics Letters, 9, 33-38. | MR | Zbl

[8] F. Brezzi, M. Fortin (1991): Mixed and Hybrid Finite Element Methods, Springer Verlag, New York. | MR | Zbl

[9] D. Caillerie (1980): The effect of a thin inclusion of high rigidity in an elastic body, Math. Meth. in the Appl. Sci., 2, 251-270. | MR | Zbl

[10] D. Capatina-Papaghiuc (1997): Contribution à la prévention du phénomène de verrouillage numérique, Thesis, Université de Pau, France.

[11] D. Chenais, J.-C. Paumier (1994): On the locking phenomenon for a class of elliptic problem, Numer. Math., 67, 427-440. | MR | Zbl

[12] P. G. Ciarlet (1978): The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications 4, North Holland, Amsterdam. | MR | Zbl

[13] P. Destuynder (1986): Une théorie asymptotique des plaques minces en élasticité linéaire, Collection RMA, Masson, Paris. | MR | Zbl

[14] B. Engquist, A. Majda (1977): Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31, 629-651. | MR | Zbl

[15] B. Engquist, J.-C. Nedelec (1993): Effective boundary conditions for accoustic and electromagnetic scattering in thin layers, Rapport Intern 278, École Polytechnique, Palaiseau.

[16] V. Girault, P. A. Raviart (1986) : Finite Element Methods for Navier-Stokes Equations, Springer Verlag, Berlin. | MR | Zbl

[17] M. D. Gunzburger (1989): Finite element methods for viscous incompressible flows, A guide to theory, practice and algorithms, Computer Science and Scientific Computing, Academic Press, San Diego. | MR | Zbl

[18] H. Le Dret (1991): Problèmes variationnels dans les multi-domaines ; modélisation et applications, Collections RMA, Masson, Paris. | MR | Zbl

[19] K. Lemrabet (1987): Étude de divers problèmes aux limites de Ventcel d'origine physique ou mécanique dans des domaines non réguliers, Thesis, USTHB, Alger.

[20] K. Lemrabet (1977): Régularité de la solution d'un problème de transmission, J. Maths Pures et Appl., 56, 1-38. | MR | Zbl

[21] N. Raynaud (1994): Approximation par éléments finis de problèmes de transmission raide, Thesis, Université de Pau, France.

[22] J. E. Roberts, J. M. Thomas (1991): Mixed and Hybrid Methods, in Handbook of Numerical Analysis, vol. II: Finite Element Methods, P. G. Ciarlet & J. L. Lions editors, North Holland, Amsterdam, 523-639. | MR | Zbl