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MATHEMATKAL MODELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 32, n° 5, 1998, p. 611 à 629)

NUMERICAL APPROXIMATION OF STIFF TRANSMISSION PROBLEMS
BY MIXED FINITE ELEMENT METHODS (*)

Daniela CAPATINA-PAPAGHIUC and Nicolas RAYNAUD (l)

Abstract — We are interested in the approximation of stiff transmission problems by the means of mixed finite element methods We prove
a resuit of uniform convergence in e, the small parameter, as the discretization 's step tends to 0, showing thus the robustness of the method
The discrete problem is then numencally solved via hybnd methods, since the ül-conditioning of the matrix makes the standard Uzawa's
algorithm impracticable The numencal results ascertain an optimal rate of convergence for both the stress tensor and the anti-plane
displacement So, contranly to primai methods, the mixed ones avoid the locking phenomenon over any regular triangulation © Elsevier,
Pans

Résumé — On s'intéresse à l'approximation des problèmes de transmission raide par méthodes d'éléments finis mixtes On établit un
résultat de convergence uniforme en £, le petit paramètre quand le pas de discrétisation tend vers 0, prouvant ainsi la robustesse de la
méthode Le problème discret est ensuite résolu numériquement via une méthode hybride, car le mauvais conditionnement de la matrice rend
impraticable Valgorithme standard d'Uzawa Les résultats numériques montrent une convergence optimale en O(h) pour le tenseur des
contraintes et pour le déplacement anti-plane En conclusion, contrairement aux méthodes pnmales conformes, les méthodes mixtes
échappent au verrouillage numérique, et ceci indépendamment de triangulation © Elsevier, Pans

1. INTRODUCTION

In this paper we study stiff transmission problems and their solution by Raviart-Thomas mixed finite element
methods. A stiff transmission problem is a parameter-dependent problem which is best described by the following
physical problem: an elastic body onto which is grafted a thin shell of thickness e and whose stiffness is an
increasing linear function of 1/e. One clearly sees that, when s tends towards zero, the thin shell acts like a
stiffener.

This kind of problem has already been solved using primai finite element methods, as in [4] and [21]; in ail
instances, locking has been exposed. Briefiy, the locking phenomenon can be described as a loss of convergence
which stems trom the approximation scheme: although mathematical convergence is secured and computer
accuracy is adequate, the approximation does not square with the expected solution. A définition of locking is
given in [4] and a criterion for avoiding locking is established in [11].

In previous cases, primai finite element methods have been employed. Mesh choice is then very important and
constraining altogether: the accuracy of the approximation for small values of the parameter s strongly dépends
on the structure of the mesh, see [21]. Essentially, standard primai methods give place to numerical locking on
arbitrary meshes.

Mixed methods weaken the continuity constraint at the internai edges of the triangulation by introducing an
additional field, the stress tensor. Actually, this is a side effect of the main purpose of mixed methods, which is
to take into account the equilibrium constraint. As a resuit, the behavior of the computed solution is independent
of the mesh structure. Moreover, we shall prove that the mixed methods are free of locking.

Let us note that the final System is never symmetrie definite positive since it corresponds to the solution of a
saddle-point problem. For our model problem, the usual Uzawa's algorithm is impracticable because the resulting
matrix is ill-conditioned for small values of the parameter e.

(*) Manuscript received February 12, 1996, Revised May 15, 1997
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612 Daniela CAPATINA-PAPAGHIUC and Nicolas RAYNAUD

To counter this drawback, we shall make use of mixed hybrid methods, which dualize the coupling constraints
in order to obtain a symmetrie defmite positive System. The underlying idea of mixed hybrid methods is to find
a field which satisfies the equilibrium conditions only at the element Ie vel (see [22]). For lo w-order methods or
in particular instances, this field can be worked out by hand. However, such a field can be computed systematically
by using the results established in [7].

The numerical approximation of the stiff transmission problem is surprising: it is bereft of locking, at least for
the lowest-order method. This is an important result since it means that we can apply mixed methods to solve
efficiently locking-prone problems.

An outline of the paper is as follows: in Section 2, we introducé our model problem as well as the Ventcel
problem, formally obtained by letting e to go to 0, and we give a summary of theoretical results. This is essentially
a recall of some results of [19]. In Section 3 we give some numerical results, showing how locking occurs when
using a primai finite element method on an arbitrary regular triangulation. The last section is devoted to the study
of mixed finite element methods for the stiff transmission problem. Firstly, a uniform convergence result is
established, which shows that the Raviart-Thomas method is robust in the sense of [4], and this for any order
k e N. Secondly, the system obtained after discretization is hybridized. We obtain in this manner a linear system
whose matrix is symmetrie de finite positive and whose unknowns are the multipliers introduced by the mixed
hybrid method. Next, we recover by a local post-processing both the approximations of the displacement and of
the stress tensor. Numerical results are also presented for the lowest-order method: they clearly show an optimal
rate of convergence for any type of mesh structure.

2. STIFF TRANSMISSION PROBLEMS

2.1. Physical motivation

To fix the frame of our study, we consider a linear anti-plane displacement elasticity problem. Of course, this
type of problem is not the most mearringful in structural mechanics, However, the terminology linked to it will
help us to illustrate the main features of the problem.

The gênerai situation of the elasticity problem studied hère is described as follows. Let Q* be an elastic body
(an open set) whose boundary is denoted by dQ+; let us suppose that dQ+ = E \j T* where both E and F* are
of non-vanishing measure. This elastic body has a thin shell, noted Q~ , grafted onto E\ let us précise that e is
a physical parameter which will tend to 0, characterizing the thickness of the thin shell. The boundary I* is
clamped.

Figure 1. — Elastic body Q + with a thin shell Û£ .
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STTFF TRANSMISSION PROBLEMS 613

Both bodies Q+ and Q£ behave according to a linear and isotropic law which we suppose to be characterized
by their respective Lamé coefficients Â, /u and À/e, ju/e. It is thus obvious that the thin shell Q~ behaves itself as
a tightener on 27, see figure 7. We dénote by Q£ the interior of Ù+ o> Q~ . For an anti-plane two-dimensional
problem, the displacement is described by a scalar function u verifying:

(1)

-Au=f
1 e

— — Au
e

d„ u = i

= ƒ
J

on Z

where v dénotes the unit normal to FE N outwardly directed with respect to Q£ and the unit normal to 27 outwardly
directed with respect to Q+. The superscripts + and - in the above transmission conditions indicate that the trace
on 27 is worked out from the value of u in Q+ and Q~ respectively.

Problem (1) stems from various physical phenomena. It models, for example, the way heat spreads out in a body
Q+ which is either partially or completely covered with a highly heat-conductive thin shell Q~ ; the quantity
u is then the température. However, it is the study of an electric current scattering in a plate bordered by a highly
conductive rod which, in steady-state, constitutes the most typical example modeled by (1). This model is also
a good approximation of wave scattering problems by a scatterer covered with a penetrable thin shell, provided
we limit ourselves to the main part of the operator of the partial differential équation set on Q+ (see [15] and [6]).

2.2. Variational formulation

We dénote by | £, | the euclidean norm of the vector i; of IR2 and by ^ . T| the scalar product of the vectors ^ and
r\ of U2 identified with column vectors. Problem (1) fits into the following setting. The thin shell Q~ is described
by:

Q~ = {x e [R2, x = m + n>(m) ; m G 27 and 0 < t < sh(m)} ,

fgiV = {xe IR2, x = m + eh( m ) v( m ) ; m e 27},

where h is a smooth real-valued function defined on 27 such that there exists /i*, h > 0 with h* < h(m) < h . One
obviously has Fe D - düE VTe N. We also introducé Ve = {v e Hl{QE)\ v - 0 on Fe D} and the bilinear forms
defined on Ve xV£ by:

a+{u,v)~ grad u . grad v dQ+,
JQ+

aE ( M, v ) = grad u . grad v dü

vol. 32, n° 5, 1998



614 Daniela CAPATINA-PAPAGHIUC and Nicolas RAYNAUD

It has the following variational formulation:

(2)

u e Ve, V Ü e Vs

with ƒ a given function of L°°( ̂  ) and ̂  an open neighbourhood of Q+. The Lax-Milgram lemma insures that
(2) has a unique solution.

This problem dépends singularly on e when e tends towards zero: actually, two difficulties appear. Firstly, the
thickness of the thin shell tends towards zero and secondly, the stiffhess coefficients tend towards infinity.

To highlight the locking phenomenon, from now on we focus on a sample case which bears all the main features
of the gênerai case, thoroughly treated in [21]. We shall therefore suppose that E is straight, which is an important
case when numerically sol ving the problem (2), and that the thickness of the thin shell is constant, that is h = 1.
The following geometry is a typical case of a straight interface (see fig. 2): we set Q+ = ]0, 1[ x ]0, 1[ and
O' = ]0, 1[ x ] - £ , 0 [ .

Figure 2. — Domain with straight interface.

By using the scale change y~yl£, v (x, y) = v(x,y) for — £ < y < 0, the thin domain Qe becomes
QT = ]0, 1 [ x ] - 1, 0[ and the space Ve turns into V- {v G Hl(Q)\ V = 0 on FD}9 where Q is the interior
of Q+ u Q~. The remaining notations may be found on figure 3.

To simplify the notation, from now on v will dénote either a function v or v , obtained by the previous scale
change, while the solution if on the new domain Q will simply be denoted by u. Problem (2) can thus be written
under the following form, which has a simple and explicit dependency on e:

u e V, Vu e V
(3)

\\cC(u\ v) + a-(u\v)+a+(u\v)= \ f v dQ+ + e f f v dQT ,

M2 AN Modélisation mathématique et Analyse numérique
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STIFF TRANSMISSION PROBLEMS 615

Figure 3. — Domain af ter change of variable.

where ƒ* = f\Q+ and/^ is the function obtained from f,Q- through the previous scale change and where:

a~ (M, V) = dxudxv dÜ~ ,

a~(u,v)=\ du dyv dQ~ .

Let us also introducé the notation:

ae(u, v) = a+(u, v)+ax (w, v)+\ay (M, V) .
o

Problem (3) fits into the gênerai setting of parameter dependent problems, studied in [4] and equally in [11].
The same gênerai framework is also used for the analysis of arch modélisation problems (see [2]). The Stokes
System, in the case of weakly compressible fluids and, more generally, saddle-point problems arising from a
penalized constraint (see [4], [8], [16], [17] and so on) use the same formulation, although with different
properties.

The sample problem (3) may actually be considered via a domain décomposition procedure as a first order
approximation of problem (1) by neglecting the curvature terms.

2.3. The Ventcel problem. Convergence of u to u°

An approach for sol ving (3) consists in identifying the limit u of u when e vanishes. It vérifies a non-standard
boundary value problem, called a Ventcel problem (see [1] and [19]) and standing for a first-order approximation
of the stiff transmission problem (3).

vol. 32, n° 5, 1998



616 Daniela CAPATINA-PAPAGfflUC and Nicolas RAYNAUD

To improve the approximation, a series expansion of u° into powers of e may be obtained through an asymptotic
analysis (cf. [9], [13] and [18]). However, the computations and the model obtained can be very complex. We shall
therefore restrict ourselves to the Ventcel problem, formally obtained from (3) by letting e to go to 0:

u° G VQ, Vu G VQ

a+(u,v)+cTx(u,v)= f fvdÜ+(4)

where

(5) Vö = {v G V\ dyv = 0 in Q~} .

It comes in a standard manner that u° also vérifies the strong variational problem:

1- d i v ( g r a d w ° ) = ƒ in Q+

u = 0 on I*

grad M° • v - d2
su° = 0 o n l 1 .

This formulation involves on E an operator whose order is greater or equal to the one of the operator involved
in the partial derivative équation on Q+. This type of non-standard boundary value problem has been studied by
Lemrabet [19]. Let us note that the same type of boundary conditions appears in absorbing boundary conditions
of wave-scattering problems (see [5], [14]) and, more generally, in multi-layer structure problems (see [12], [18]).

For k G N, we dénote by || . \\KQ+ and by || . \\KQ- the respective norms equipping the Sobolev spaces
Hk(Ü+) and Hk(Q~). Let us endow the space V with the norm || . || v= ( || . ||\>Q> + || . \\^Q- ) 1 / 2 . From now
on, we shall note fe = (ƒ", ef) e L2(Q+) x L2(Q~).

Let us recall the foliowing result, initially established in [19]:
THEOREM 2.1: We have the strong convergence results:

lim u — u in V,

lim - dyu = 0 in L2( Q~ ) . D

3. NUMERICAL LOCKING

We show in this section the numerical results obtained for our sample problem when employing a primai
^-conforming finite element method. Let 2T̂  , respectively 2Tft be regular mesh partitions (in the sense of Ciarlet
[12]) of Q+

y respectively of Q~~ into triangles of diameter no greater than h, compatible on the interface E, From
now on, we shall note <3'h =

 <3'+h u ?f~h and we dénote by 0*x the space of polynomials of degree at most 1. We
are now able to introducé the finite dimensional space

We seek to approximate u by uh e Vh when s is very small and we need to do so with some degree of accuracy.
We proceed as follows: using a Standard finite element method, we solve the approximate transmission problem.
The initial data is chosen so that u, solution of the continuous problem, can be worked out explicitly.
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STIFF TRANSMISSION PROBLEMS 617

Figure 4. — Exact solution to the transmission problem ( e = 10 )

Let us note that the discretization of problem (3) by a standard finite element method leads to an ill-conditioned
problem. More specifically, even when theoretical convergence is guaranteed, the round off error linked to the
floating-point arithmetic may generate a solution without any link with the exact solution. In order to focus just
on the locking phenomenon, we will keep to the range of a (e ^ 10" ) where this degeneracy does not occur.

We now visualise the exact solution of the transmission problem (see fig. 4), computed for
f^(x,y) = n2 sin (nx) v, f~(x,y) = 0 and e = 10" 6, by an exact analytical formula.

It is obvious from figure 4 that the exact solution has a particular geometrie behavior: its value along the normal
to E is constant over Q~. This confirms the result of the previous section, that is dyu —» 0 in Q~ when e —» 0.

3.1. Locking on unstructured meshes

The numerical results of this paragraph are obtained over the unstructured mesh given in figure 5.

W \
/\/V\/\A/v\7M

Figure 5. — Unstructured mesh.

vol. 32, n° 5, 1998
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Figure 6. — Rate of convergence of ue
h in L2(&)-norm.

The well-known technique of mesh refinement, when applied bluntly to our model problem, does not lead to
any improvement of the accuracy of the approximation (see also [4]). Indeed ,^ . 6 and fig. 7 show the rates of
convergence of u - uh for the L2(£2)-norm, respectively for the energy norm of the problem. We précise that
the energy norm is defined for any v e. V by \v\e = \faj[v~v).

320

Number of unknowns

1000

Figure 7. — Rate of convergence of üe
h in energy norm.

As e decreases, one can see that the convergence rates deteriorate from O(N~ 1) - O(h2) in figure 6,
respectively O(N~ Ul) = O(h) in figure 7 (for 6 = 1 0 " ' ) to O( 1 ) in both cases (for e = 1 0 ~ b ) . Here, N
dénotes the number of unknowns of the final system. We also note that, when s runs from 10 to 10 , the
corresponding curves cannot be distinguished: the values of the error have identical significant digits.

So, when using an arbitrary triangulation, the method présents complete locking of order
O(Nm) = O(h~l) and therefore is not robust (see [4]).
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STTFF TRANSMISSION PROBLEMS 619

Perhaps the most glaring feature of the approximation corresponding to the top curve of figure 6, where no
convergence is ensured, is that it vanishes on Q~ (see 2L\SO fig. 8): the exact solution is just not approached. It is
a clear manifestation of the locking phenomenon. In figure 8 we have represented the discrete solution computed
by the Lagrange method on the mesh of figure 5, corresponding to s = 10i - 6

Figure 8. — Three dimensional représentation of uk ( £ = 10 )

Note that the solution does not show any sign of numerical instability: it does not blow-out or oscillate quickly.
Actually, the restriction of the approximation iïh to Q+ is the solution of a standard Laplace problem with an
homogeneous Dirichlet boundary condition, with no connection whatsoever with problem (1).

3.2. Why locking?

To answer this question, we need to recall that the exact solution u of (3) tends to w° when £ —» 0, with
u e Vo verifying (4). lts approximation ü\ by the ^-conforming method satisfies the foliowing discrete problem:

Oh

=\ fvhdü\

where

If VQ is well-approximated by the discrete kernel VQh, the results of [11] then yield the uniform convergence in
e and h of uh towards u

There exists a class of meshes, called adapted meshes, for which the above property can be proved using the
Lagrange interpolation operator (see [21]). These meshes adapt their structure to the behavior of u: all the
segments linking E to FN are parallel to the v-axis (a typical example is a uniform mesh). The discretization over

1/2 >
adapted meshes provides optimal rate of convergence O(N~ ).

vol. 32, n° 5, 1998



620 Daiuela CAPATINA PAPAGHIUC and Nicolas RAYNAUD

On the contrary, the approximation of the kernel Vo does not hold on unstructured meshes, which yield the poor
convergence of the previous paragraph Indeed, when considenng meshes with no vertical ïntenor edge on the
domain Q~, the constraint d vh = 0 implies vh = 0 on Q~, this is the case for the mesh of figure 5 This aspect
of lockmg has been more comprehensively researched in [21] In the next section of this paper, we will focus on
mixed finite element methods to counter lockmg

4 MIXED METHODS

4.1. The dual mixed formulation

In order to wnte the mixed formulation of (2), we use the standard technique which we descnbe below The
anti plane displacement ue satisfies the équation

(7) - div ( AE grad u ) = fe in Q ,

on Q We then introducé as unknown
ri o i

where Ae is the identity matrix on ü+ and Ae = ft 2

(8) pe = A£ grad u

and express vanationally this équation as well as the equilibnum relation

(9) divpÊ +/fi = 0 i n Ö

Equahty (8) shows that pe e //(div, Q), where //(div, Q) is the sub-space of (L2(Q)) -fields
L2(r3)-divergence (see [22])

Let us introducé the sub-space W of //(div, Q) defined by

W = {q e H( div, Q ), q . v = 0 on rN) ,

the partial normal traces being defined m H 1/2( FN), which is the dual space of Hl^{ FN), we call HQQ( FN) the
space of traces on FN of functions from Hl(Q) which vanish on dQ\FN Now, the dual mixed formulation of (2)
amounts to solving the following problem

(10)

( p \ wfi) e WxL2(Q), V ( q , ü ) e WxL2(Q)

A~ 1 pe . q dQ + u div q dü = 0 ,

v div pÊ dQ - - f fe v dQ
in JQ

Let ?Fh be a regular tnangulation of Q mtroduced m Section 3 For any k e N, we dénote by &k and $ k the
space of polynomials of degree at most k, respectively the space of homogeneous polynomials of degree k Let
us ree all the définition of the Raviart-Thomas polynomial space of order k

M2 AN Modélisation mathématique et Analyse numérique
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where x •-> r (x) is the vector field of coordinates (x,y) of point x. We also introducé the following décom-
position of the Raviart-Thomas space (see [7]):

(11) RTk = {q^ (^k)
2', div q = 0} © r ^ ,

which will be needed for the numerical solving of the System obtained after hybridization. For any k e N, one
can now define the following finite dimensional spaces:

Wh = {qh e //(div; fl); VT e ST„ q e tfl^ q A . v = 0 o n ^ } l

and write down the mixed discrete formulation of (2) for the Raviart-Thomas method of order k:

(12)

(P>I

üAdi

. q, dQ + ^ div q̂

WhxMh

= 0 ,

Jü
= - fevhdQ.

4.2. Existence and uniqueness

For the sake of clarity, let us introducé further notation. We note the bilinear forms which describe the
continuous mixed problem by cE( . , . ) and b( . , . ), where

V p , q e W , c e (p ,q)= A~ 1 p . q dQ ,

\/v e V, V q e W , b( v, q) = Ü div q dQ .
JQ

Since WhtzW and M^ cz L2(Q), they are obviously well-defined in the discrete case too. The space L2(Q) is
equipped with its classical norm || . ||0 Q, while W is endowed with the following weighted norm:

where for any q = (qv q2) e W we set:

(13)
Q+

[(q,)2 + (eq2)
2] dQ~ .

By the means of the Babuska-Brezzi theory (see [22], [8]), the existence and the uniqueness of the solution of
the continuous problem (10) are quite obvious. Therefore, we are only interested in the discrete case. Denoting
the discrete kernel of b{ . , . ) by Vh, one can easily see that

Vh = K e Wh, div qh = 0} .

vol. 32, n° 5, 1998



622 Daniela CAPATINA-PAPAGHIUC and Nicolas RAYNAUD

Next, we remark that the following two conditions hold:

(14) Vq, € Vh9 c 8 ( q U > q f c ) ^ a | | c t | | ^ , ,

\b(v.9q, ) |
(15) inf sup „ ' „ \ h , 5= /?,

with strictly positive constante a, ƒ? independent on e or A (in f act, a = 1 ). The relation (15) is the well-known
discrete inf-sup condition of Babuska-Brezzi, which assures the compatibility between the finite dimensional
spaces Wh and Mh. It results easily from standard properties of mixed formulations of 2nd order elliptic problems
(see [8], [22] for instance). So, we can now make use of the Babuska-Brezzi theory once again, in order to deduce
the existence and uniqueness of the solution of (12).

4.3. Uniform convergence

Let us first remark that pe is not uniformly bounded in H1(Q+ u Q~) (cf. [20]). So, the direct application of
classical error estimâtes given by the mixed methods theory does not yield a uniform bound of the error. In order
to elude this difficulty, we shall make use of the limit problem (4). See also [10] for further details and equally
for a different approach, via nonconforming methods.

More precisely, we establish here the uniform convergence of (pe
h , u

e
h), the unique solution of (12), towards

(p £ , u). To do that, we shall first study the weak limit of (p£ , uh) as e —> 0 and h —> 0. We need the lemmas
below:

LEMMA 4.1: The next statements hold:

3z e L2(Q), lim u\ = z weakly in L2(Q) ,

3r + e H( div; ü+ ), Urn p^ = r + weakly in H( div; Q+ ) ,
% ^ 8

3r~ G L2(Q~), lim p\ l = r\ weakly inL2{Q~) ,
fi -> 8

3r~ e L2(D~), lim ep\ 2 = r~ weakly in L2(Q~) ,
fi ^> 8

at least for a sub-sequence of (e, h).

Proof: Using the first équation of (12), we have:

=-*(««) = - f fe<dü,

which translates into \\pe
h \\

 2
Q Q e ^ \\fe \\ 0 Q || uh || 0 Q ^ c || uh || 0 ^, with c a positive constant independent of both

£ and h. Next, the inf-sup condition (15) gives:

>••<•»
so one immediately gets that || uh || 0 Q ^ c and || p^ || 0 Q e ^ c. Let us also note that

div p^ = - PJe a.e. in i2+ ,

M2 AN Modélisation mathématique et Analyse numérique
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STIFF TRANSMISSION PROBLEMS 623

with Ph the L2(£2)-orthogonal projection from L2(Q) to Mh, so that we have:

Recalling the définition (13) of the norm || . || 0 Q g, we obtain the weak convergence results announced previously,
at least for a sub-sequence of (s, h). D

Let us now introducé the spaces

l ^ = {qe H( div; Q+); q . v = 0 on 27},

VT = {q e //( div; Q~)\ q . v = 0 on E u FN}

and let us also dénote by W^ and W^ the corresponding discrete sub-spaces:

Wl ={qh e r ; V r E ^ , V eRTk},

Wh ={qh e W";Vre 2^ , q„ | r e J?rt} .

With the help of the equilibrium interpolation operator (see [22] for more details), one can prove that the functions
of W* and W~ are correctly approached by those of W^ and W~h respectively. We are now able to establish:

LEMMA 4.2: We have the following relations:

z e Vo, 3^ = 0 on FN,

r + = grad z a.e. in Q+,

r~ = d^z a.e. in Q~.

Proof: Let q be any given element of W+. There exists then a séquence qA e W^ such that lim q̂  = q,
strongly in //(div; Q+). Defining qh by q̂  = q̂  in Q+ and q̂  = 0 in Q~, we clearly have that qh e Wh. So,
considering the test-function q̂  in the first équation of (12), one gets:

(16) f p£ .q , dQ++ f < d i v q , dQ+= 0 .
JQ+ JQ+

Next, passing to the limit when s —> 0, h —» 0 in (16) gives

V q e ^ , I r + . q dü+ + | z div q dQ+ = 0 .
JQ+ JQ+

This relation implies that r + = gradz in Q+ in the sense of distributions; since r + e (L (Q+)) , it comes
that r + = grad z a.e, in Q+. By the means of the Green's formula, we equally obtain that z = 0 on
dü+ n rD.

A similar argument in the domain Q~ and a passage to the limit in the relation

V q , e T ^ , f A-lpe
h .qh dQ~ + f u\ div q, dQ~ = 0
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yields the following statement:

Vqer, r~ q1 dQ~ + z div q dQ~ = 0 .

With the notation r~= (r~ , 0 ) , we deduce by a similar reasoning as above that:

r ~ = grad z a.e. in Q~, z = 0 on dQ~ r\ FD, d^z = 0 on FN.

We already know that Z\Q+ e Hl(Q+), Z\Q- e Hl(Q~)\ we still have to show that z e Vo.
Since the functions of Wh approach correctly those of W, for any q e W there exists a séquence

(*lfc \ > 0 e- Wh such that lim q^ = q strongly in //(div; Q). So, when e and h tend to zero we obtain from the
first équation of (12):

Vq G W, grad z . q <i£2+ + dxzq1 dü~ + z div q öff2+ + z div q £/O~ = 0 .

Thus Green's formula on Q+ and Q~ respectively (and taking q e W with q . v e L2( d£? ), for instance) directly
leads to:

Lf £

As a conséquence, z" = z~ on E and so z e Vo. This concludes the proof. D

LEMMA 4.3: H

where uö is the solution of the Ventcel problem (4).

Proof: Let us consider any v e Vo. Since jfh e Wha / /(div; Q), we have that:

I
Once again, the Green's formula gives:

p* • grad v dü+ + v div p* dü+ + pE
h 1 dxv dQ~ + v div ph dü~ = 0 .

When E and h both tend towards zero, we obtain in fact the variational formulation of (4):

Vu e Vo, grad z - grad v dü+ - fv dQ+ + a^ a î; dü~ = 0 .

Since (4) has a unique solution M°, we clearly get that z = u°. As a conséquence, the weak convergences
established in Lemma 4.1 hold for all the séquence (s, h). •

We are now able to prove the following theorem, which is the key part of this paragraph.

THEOREM 4.4: For (f9f) e H\Q+) XH\Q~), we have:
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Proof: Let us first notice that, because of the uniqueness of the limit of weakly convergent sub-sequences of
(PA» M D (according to Lemma 4.2 and Lemma 4.3), the convergences established in Lemma 4.1 hold for the
whole séquence (e, h). Using the définition of || . || 0 Q e and the formulation of the mixed problem, we can next
write:

IIP£ - P I IIS.O..= f Uu+u\)dQ-i [ A; V -Pi dn.

Passing to the limit as e —> 0, h —> 0, the results of the preceding lemmas lead to:

l im | |pÊ - p * Ilo,o,e = ° -
e —> U * '

Since

l|div(p£ -p ; )Ho. f l = \\fe-Phfe\\0,Q,

by taking (f,D e Hl(Q+) x Hl{Q~) we easily obtain:

(17) lim ||p£ -PÂ ||w>, = 0 .

Concerning the primai unknown u, we get by classical estimâtes of mixed methods theory that

and since u is bounded in ̂ (Q) the above relation implies:

(18) lim | | M ' - « X t f l = 0 .

Let now fix any s0 e ]0, 1]. Classical error's estimâtes for mixed formulations (see [8], [22]) then give, for any
s e [e0, 1]:

\\P' - P i \ \ w + \ \ » ° - < h a * c ( i r i | | p e - q A | | W i e + mf^ l l ^ - ^ l l 0
jl/t fi fi rî

with c a constant independent on e or h. The last inequality can be obtained, for instance, by the means of
equilibrium, respectively Lagrange interpolation. Using now that pe = AE grad u and that u is uniformly
bounded in H2(Q+ u Q), cf. [20], it cornes that:

Therefore, we have:

Together with (17) and (18), this yields the announced resuit. D
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REMARK 4 1 This result gives the uniform convergence of the mixed method The method is thus robust m the
way descnbed by Babuska and Sun in [4] Moreover, one can see that the proof is valid for any order k e f̂ l of
the method D

REMARK 4 2 Taking mto account Theorem 2 1 and Theorem 4 4, one can see that we have also proved the
strong convergence of (p* , uh) towards (p , u ), for the norms .o e a n d II • il o a respectively

lim

We recall that p° is given by the relations below

p° = grad u° in Q+, p° = (dxu°, 0 ) in fl~

Notice that p° £ //(div, Q), since there is no continuity of the normal traces on E, this explams why the above
convergence of p^ takes place only for a weighted norm

4.4. Mixed hybrid method

|0 Q e of (L2(Q))2 D

The mixed formulation (12) leads to a linear system whose matnx is not defimte positive A direct resolution
by the means of Uzawa's algonthm cannot be applied, since the resulting matnx is ïll conditioned for small values
of a A solution is then to mtroduce Lagrangian multipliers, in order to relax the continuity constraint contamed
in the définition of Wh, see [8] or [22] This idea has also been analyzed in [3]

To this end, we need further notation For any T e ST̂ , we dénote by T any edge of the triangle T, S h then
dénotes the set-wise non-disjoint reunion of ail edges of ?fh Making an abuse of notation, we will wnte that

T e Sh

e »k and Xh = 0 on rD),

RTk}

We can define Lh and Wh _ , by

Lh = {Xh e L\ êh ), V r G Sh,

W* - i = {O* e (L2(Q) ) \ VT e W

The key property of Wh _ x is that there is no coupling constraint on îts éléments The new multipliers Àe
h now

join the formulation and descnbe the coupling of the normal component of ps
h on the internai edges

V J e 2Th, Vq r e RTk(T) ,

f A' ' pi. qT dT+ f u\ div q r dT- 2 f K*T- V dT'= ° '
(19) { f f

^VT?Th, VvTe &k(T)9 \ vTdiv pe
h dT= - \ fevTdT,

JT JT

Te ST. T E T JT
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Recalling the results established in [7], the décomposition of the Raviart-Thomas polynomial space (11) allows
us to choose test-functions qT such that div qT = 0 on T e Wh. This, in turn, leads to a symmetrie definite
positive System which is assembled from elementary matrices computed at the element Ie vel. More specifically,
this method can be viewed as a non-conforming pseudo-method of order k + 1 (see [3] or [7] for further details).

4.5. Numerical results

We solve (19) through the lo west-order mixed method, that is for k = 0, over the mesh of figure 5. The degrees
of freedom of the final System are the nodal values at the mid-point of the internai edges of the mesh. On each
edge subnütted to a Dirichlet constraint, the value of X\ is set to zero.

The multipliers k\ approximate the values of u at the mid-point of the edges of the triangulation. A simple
post-process enables us to recover p^ and uh. This is a local post-process, Le. it is applied at the element Ie vel.

For practical reasons, we choose to show only the approximated values of uh at the vertices of the triangulation,
obtained after a second post-process. The corresponding three-dimensional représentation (for s = 10
the same charges (ƒ*",ƒ") as in fig. 4 and fig. 8) is given below by figure 9.

i- 6 and for

Figure 9. — Three dimensional représentation of uh ( e = 10 6 )

The figure 10 gives the rate of convergence of uh - u when computed over an arbitrary mesh of the type given
m figure 5, v/hils figure 11 represents the rate of convergence of p^ - pe for the energy norm || . || w £. In both

1/2cases, the rates of convergence are optimal: O{JST ) = O(h). Moreover, we obtain identical curves for a
between 10" 1 and 10" 6: indeed, the L2(Q )-error on u as well as the W-error on pe present very little
sensitiveness to the variation of the parameter s, which finally give the same significant digits of their logarithms.

As a conclusion, the lo west-order mixed method is loking-free over any regular triangulation,
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Figure 10. — Convergence rates for uE
h in £ (Q )-norm.
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Figure 11. — Convergence rates for pj: in W-norm.
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