DANIELA CAPATINA-PAPAGHIUC

NICOLAS RAYNAUD

Numerical approximation of stiff transmission problems
by mixed finite element methods

M2AN - Modélisation mathématique et analyse numérique, tome 32, n°5 (1998),
p- 611-629

<http://www.numdam.org/item?id=M2AN_1998__32_5_611_0>

© SMALI, EDP Sciences, 1998, tous droits réservés.

L’acces aux archives de la revue « M2AN - Modélisation mathématique et analyse
numérique » (http://www.esaim-m2an.org/) implique I’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=M2AN_1998__32_5_611_0
http://www.esaim-m2an.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
M MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 32, n° 5, 1998, p. 611 a 629)

NUMERICAL APPROXIMATION OF STIFF TRANSMISSION PROBLEMS
BY MIXED FINITE ELEMENT METHODS (*)

Daniela CAPATINA-PAPAGHIUC and Nicolas RAYNAUD (1)

Abstract — We are interested in the approximation of styff transmission problems by the means of mixed finite element methods We prove
a result of uniform convergence in &, the small parameter, as the discretization’s step tends to 0, showing thus the robustness of the method
The discrete problem 1s then numerically solved via hybnid methods, since the ill-conditioning of the matrix makes the standard Uzawa’s
algorithm impracticable The numerical results ascertain an optimal rate of convergence for both the stress tensor and the anti-plane

displacement So, contrarily to primal methods, the mixed ones avoid the locking phenomenon over any regular triangulation © Elsevier,
Paris

Résumé — On s’'intéresse a I’approximation des problémes de transmission raide par méthodes d’éléments fimis mixtes On établit un
résultat de convergence uniforme en ¢, le petit paramétre quand le pas de discrénisation tend vers 0, prouvant ainst la robustesse de la
méthode Le probléme discret est ensuite résolu numériquement via une méthode hybride, car le mauvais conditionnement de la matrice rend
impraticable I’algorithme standard d’Uzawa Les résultats numériques montrent une convergence optimale en O(h) pour le tenseur des
contraintes et pour le déplacement anti-plane En conclusion, contrairement aux méthodes primales conformes, les méthodes mixtes
échappent au verroulllage numénque, et cect indépendamment de triangulation © Elsevier, Paris

1. INTRODUCTION

In this paper we study stiff transmission problems and their solution by Raviart-Thomas mixed finite element
methods. A stiff transmission problem 1s a parameter-dependent problem which is best described by the following
physical problem: an elastic body onto which is grafted a thin shell of thickness ¢ and whose stiffness is an
increasing linear function of 1/e. One clearly sees that, when ¢ tends towards zero, the thin shell acts like a
stiffener.

This kind of problem has already been solved using primal finite element methods, as in [4] and [21]; in all
instances, locking has been exposed. Briefly, the locking phenomenon can be described as a loss of convergence
which stems from the approximation scheme: although mathematical convergence is secured and computer
accuracy is adequate, the approximation does not square with the expected solution. A definition of locking is
given in [4] and a criterion for avoiding locking is established in [11].

In previous cases, primal finite element methods have been employed. Mesh choice is then very important and
constraining altogether: the accuracy of the approximation for small values of the parameter ¢ strongly depends
on the structure of the mesh, see [21]. Essentially, standard primal methods give place to numerical locking on
arbitrary meshes.

Mixed methods weaken the continuity constraint at the internal edges of the triangulation by introducing an
additional field, the stress tensor. Actually, this is a side effect of the main purpose of mixed methods, which is
to take into account the equilibrium constraint. As a result, the behavior of the computed solution is independent
of the mesh structure. Moreover, we shall prove that the mixed methods are free of locking.

Let us note that the final system is never symmetric definite positive since it corresponds to the solution of a
saddle-point problem. For our model problem, the usual Uzawa’s algorithm is impracticable because the resulting
matrix is ill-conditioned for small values of the parameter e.

(*) Manuscript received February 12, 1996, Revised May 15, 1997
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To counter this drawback, we shall make use of mixed hybrid methods, which dualize the coupling constraints
in order to obtain a symmetric definite positive system. The underlying idea of mixed hybrid methods is to find
a field which satisfies the equilibrium conditions only at the element level (see [22]). For low-order methods or
in particular instances, this field can be worked out by hand. However, such a field can be computed systematically
by using the results established in [7].

The numerical approximation of the stiff transmission problem is surprising: it is bereft of locking, at least for
the lowest-order method. This is an important result since it means that we can apply mixed methods to solve
efficiently locking-prone problems.

An outline of the paper is as follows: in Section 2, we introduce our model problem as well as the Ventcel
problem, formally obtained by letting ¢ to go to 0, and we give a summary of theoretical results. This is essentially
a recall of some results of [19]. In Section 3 we give some numerical results, showing how locking occurs when
using a primal finite element method on an arbitrary regular triangulation. The last section is devoted to the study
of mixed finite element methods for the stiff transmission problem. Firstly, a uniform convergence result is
established, which shows that the Raviart-Thomas method is robust in the sense of [4], and this for any order
k € N. Secondly, the system obtained after discretization is hybridized. We obtain in this manner a linear system
whose matrix is symmetric definite positive and whose unknowns are the multipliers introduced by the mixed
hybrid method. Next, we recover by a local post-processing both the approximations of the displacement and of
the stress tensor. Numerical results are also presented for the lowest-order method: they clearly show an optimal
rate of convergence for any type of mesh structure.

2. STIFF TRANSMISSION PROBLEMS

2.1. Physical motivation

To fix the frame of our study, we consider a linear anti-plane displacement elasticity problem. Of course, this
type of problem is not the most meaningful in structural mechanics. However, the terminology linked to it will
help us to illustrate the main features of the problem.

The general situation of the elasticity problem studied here is described as follows. Let 27 be an elastic body
(an open set) whose boundary is denoted by Q"; let us suppose that 32" = X I'" where both X and I'* are
of non-vanishing measure. This elastic body has a thin shell, noted €2, , grafted onto X let us precise that ¢ is

a physical parameter which will tend to O, characterizing the thickness of the thin shell. The boundary I™ is
clamped.

Figure 1. — Elastic body 2 * with a thin shell 2, .
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STIFF TRANSMISSION PROBLEMS 613

Both bodies Q" and Q7 behave according to a linear and isotropic law which we suppose to be characterized
by their respective Lamé coefficients A, u and /e, p/e. It is thus obvious that the thin shell £2_ behaves itself as
a tightener on X, see figure 1. We denote by Q. the interior of QU €2 . For an anti-plane two-dimensional
problem, the displacement is described by a scalar function u° verifying:

(— Au* =f in Q°
~Law =y in Q

o Wt :80 onl ,=I"UT,,
a,u =0 onl,
() =) on X
\(E)vue)J':%(avue)~ onX,

where v denotes the unit normal to I, , outwardly directed with respect to €2, and the unit normal to 2 outwardly
directed with respect to 7. The superscripts + and — in the above transmission conditions indicate that the trace
on X is worked out from the value of «° in Q" and Q,_ respectively.

Problem (1) stems from various physical phenomena. It models, for example, the way heat spreads out in a body
Q7 which is either partially or completely covered with a highly heat-conductive thin shell Q_ ; the quantity
u’ is then the temperature. However, it is the study of an electric current scattering in a plate bordered by a highly
conductive rod which, in steady-state, constitutes the most typical example modeled by (1). This model is also
a good approximation of wave scattering problems by a scatterer covered with a penetrable thin shell, provided
we limit ourselves to the main part of the operator of the partial differential equation set on Q7 (see [15] and [6)).

2.2. Variational formulation

We denote by |§| the euclidean norm of the vector § of R* and by & . 1 the scalar product of the vectors & and

n of R? identified with column vectors. Problem (1) fits into the following setting. The thin shell €2, is described
by:

Q. ={xe R x=m+(m);me Tand0<z<eh(m)},
I,y={xe R, x=m+eh(m)v(m);me I},

where % is a smooth real-valued function defined on X such that there exists k., &~ > 0 with &, < #(m) < k. One

obviously has I', ,=0dQ,\I[, ,. We also introduce V, = {fveH 1(95)2 v=0onTl, D} and the bilinear forms
defined on V, X V_ by:

a(u,v)= J' grad u . grad v dQ",
Q+

a;(u,v):J. grad u . grad v dQ_ .
Q;

vol. 32, n°® 5, 1998
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It has the following variational formulation:

eV, YveV,
2
2 %a;(us,v)+a+(u5,v)=J. fodQ,,
Q

3

with f a given function of L™(% ) and % an open neighbourhood of Q". The Lax-Milgram lemma insures that
(2) has a unique solution.

This problem depends singularly on ¢ when ¢ tends towards zero: actually, two difficulties appear. Firstly, the
thickness of the thin shell tends towards zero and secondly, the stiffness coefficients tend towards infinity.

To highlight the locking phenomenon, from now on we focus on a sample case which bears all the main features
of the general case, thoroughly treated in [21]. We shall therefore suppose that X is straight, which is an important
case when numerically solving the problem (2), and that the thickness of the thin shell is constant, that is 2 = 1.
The following geometry is a typical case of a straight interface (see fig. 2): we set Q= 10, 1[ x ]O, 1[ and
2, =]0,1[ x ] —¢,0[.

VYA

Q‘#

N\Thin shell

<4-m
”

I

Figure 2. — Domain with straight interface.

By using the scale change y=yle, v (x,¥)=v(x,y) for —e<y<O0, the thin domain Q, becomes
Q7 =1]0,1[ x ] - 1,0[ and the space V, turns into V={v € H'(Q);v=00n I'p}, where Q is the interior
of Q" U Q7. The remaining notations may be found on figure 3.

To simplify the notation, from now on v will denote either a function v or v , obtained by the previous scale
change, while the solution & on the new domain £ will simply be denoted by u°. Problem (2) can thus be written
under the following form, which has a simple and explicit dependency on &:

eV, YveV

(3)
%a;(us,v)+a;(u8,v)+a+(us,v)=f fvd.(2++sj fvdQ2,
& o Q

M? AN Modélsation mathématique et Analyse numérnique
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Figure 3. — Domain after change of variable.

where f* = f| o+ and f~ is the function obtained from f| o; through the previous scale change and where:

a;(u,v):j ouovdQ,

a, (u,v) = ,L- oudpdQ .

Let us also introduce the notation:

as(u,v)=a+(u,v)+a;(u,v)+§a;(u,v).

Problem (3) fits into the general setting of parameter dependent problems, studied in [4] and equally in [11].
The same general framework is also used for the analysis of arch modelisation problems (see [2]). The Stokes
system, in the case of weakly compressible fluids and, more generally, saddle-point problems arising from a

penalized constraint (see [4], [8], [16], [17] and so on) use the same formulation, although with different
properties.

The sample problem (3) may actually be considered via a domain decomposition procedure as a first order
approximation of problem (1) by neglecting the curvature terms.

2.3. The Ventcel problem. Convergence of u° to u’

An approach for solving (3) consists in identifying the limit u° of u° when ¢ vanishes. It verifies a non-standard
boundary value problem, called a Ventcel problem (see [1] and [19]) and standing for a first-order approximation
of the stiff transmission problem (3).

vol. 32, n°® 5, 1998
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To improve the approximation, a series expansion of u° into powers of ¢ may be obtained through an asymptotic
analysis (cf. [9], [13] and [18]). However, the computations and the model obtained can be very complex. We shall
therefore restrict ourselves to the Ventcel problem, formally obtained from (3) by letting ¢ to go to O:

0
u eV, VvelV,

4 _

@ a*(u°,v)+a;(u°,v)=f ffvdQr,
Q+

where

) Vo={ve V;op=0inQ7}.

It comes in a standard manner that u° also verifies the strong variational problem:

—div (grad u®) = f in Q"
(6) =0 onI™

graduo.v—aiuozo onZX.
This formulation involves on 2 an operator whose order is greater or equal to the one of the operator involved
in the partial derivative equation on 2. This type of non-standard boundary value problem has been studied by

Lemrabet [19]. Let us note that the same type of boundary conditions appears in absorbing boundary conditions
of wave-scattering problems (see [5], [14]) and, more generally, in multi-layer structure problems (see [12], [18]).

For k€ N, we denote by | . lli o+ and by | . ||k o- the respective norms equipping the Sobolev spaces
HY(Q") and H k(7). Let us endow the space V with the norm || . ||, = (] . {,1 o+ 1. ||1 o )!'’2. From now
on, we shall note f‘e_(f"’gf_)cuz(() \VU{Q

Let us recall the following result, initially establlshed in [19]:

THEOREM 2.1: We have the strong convergence results:

. 0.
llrr%u£=u inVv,
&

- 1 e _ . 2 —
Eh_I)I})SE)yu =0inLl°(27). O

3. NUMERICAL LOCKING

We show in this section the numerical results obtained for our sample problem when employing a primal
2 -conforming finite element method. Let J, , respectively I, be regular mesh partitions (in the sense of Ciarlet
[12]) of 27, respectively of 27 into triangles of diameter no greater than A, compatible on the interface 2. From
now on, we shall note I 9’+ u I, and we denote by £, the space of polynomials of degree at most 1. We
are now able to mtroduce the ﬁmte dimensional space

V,={v,€ V;VTe T, v,,€ 2}.
We seek to approximate u° by #;, € V, when ¢ is very small and we need to do so with some degree of accuracy.

We proceed as follows: using a standard finite element method, we solve the approximate transmission problem.
The initial data is chosen so that u°, solution of the continuous problem, can be worked out explicitly.

M? AN Modélisation mathématique et Analyse numénque
Mathematical Modelling and Numerical Analysis



STIFF TRANSMISSION PROBLEMS 617

Figure 4. — Exact solution to the transmission problem (&= 10 ~ é )

Let us note that the discretization of problem (3) by a standard finite element method leads to an ill-conditioned
problem. More specifically, even when theoretical convergence is guaranteed, the round off error linked to the
floating-point arithmetic may generate a solution without any link with the exact solution. In order to focus just
on the locking phenomenon, we will keep to the range of ¢ (¢ = 10~ 6) where this degeneracy does not occur.

We now visualise the exact solution of the transmission problem (see fig. 4), computed for
fi(x,y)=n"sin(nx)y, f(x,y)=0 and =105, by an exact analytical formula.

It is obvious from figure 4 that the exact solution has a particular geometric behavior: its value along the normal
to 2’ is constant over £2°. This confirms the result of the previous section, that is ayug — 0in Q whene — 0.

3.1. Locking on unstructured meshes

The numerical results of this paragraph are obtained over the unstructured mesh given in figure 5.
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Figure 5. — Unstructured mesh.
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[ 1
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100 320 1000
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Figure 6. — Rate of convergence of 12,‘. in LZ(Q )-norm.

The well-known technique of mesh refinement, when applied bluntly to our model problem, does not lead to
any improvement of the accuracy of the approximation (see also [4]). Indeed, fig. 6 and fig. 7 show the rates of

convergence of u° — u, for the LZ(Q)-norm, respectively for the energy norm of the problem. We precise that
the energy norm is defined for any v € V by |v|,=Va,(v,v).

06 |-

07 F
3 08|
) TTo—910°<£<10°
o9 |
s e=10?
q0f-
ERES
e=25107
a2fF
a3k
e=5107
14}
A i 1 4 Y A e 1 e

«
n

Energy norm of u

g=10"

1 . i
100 320 1000
Number of unknowns

Figure 7. — Rate of convergence of ﬁ; in energy norm.

As & decreases, one can see that the convergence rates deteriorate from O(N ') = O(h*) in figure 6,
respectively O(N~ ?) = O(h) in figure 7 (for e=10"") to O(1) in both cases (for &= 10" ®). Here, N
denotes the number of unknowns of the final system. We also note that, when & runs from 10~ ’to 107, the
corresponding curves cannot be distinguished: the values of the error have identical significant digits.

So, when wusing an arbitrary triangulation, the method presents complete

locking of order
O(Nm) =0(h ') and therefore is not robust (see [4]).

M? AN Modélisation mathématique et Analyse numérique
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STIFF TRANSMISSION PROBLEMS 619

Perhaps the most glaring feature of the approximation corresponding to the top curve of figure 6, where no
convergence is ensured, is that it vanishes on £ (see also fig. 8): the exact solution is just not approached. It is
a clear manifestation of the locking phenomenon. In figure 8 we have represented the discrete solution computed
by the Lagrange method on the mesh of figure 5, corresponding to ¢ =10 ¢

Figure 8. — Three dimensional representation of u, (¢= 10 ~ %)

Note that the solution does not show any sign of numerical instability: it does not blow-out or oscillate quickly.

Actually, the restriction of the approximation i, to Q7" is the solution of a standard Laplace problem with an
homogeneous Dirichlet boundary condition, with no connection whatsoever with problem (1).

3.2. Why locking?

To answer this question, we need to recall that the exact solution #° of (3) tends to u° when ¢ — 0, with
W’ e V, verifying (4). Its approximation [zg by the £ ,-conforming method satisfies the following discrete problem:

-0
u,e V,,, Vv, eV,,

a+(ﬁ2, v,) +a, (ﬁg, v,) = f frv,d",
Q+
where

Von= {vh e Vy; ayvh =0in Q_} .

If V, is well-approximated by the discrete kernel V,,, the results of [11] then yield the uniform convergence in
¢ and h of &, towards u’.

There exists a class of meshes, called adapted meshes, for which the above property can be proved using the
Lagrange interpolation operator (see [21]). These meshes adapt their structure to the behavior of u’: all the
segments linking 2’ to I',, are parallel to the y-axis (a typical example is a uniform mesh). The discretization over
adapted meshes provides optimal rate of convergence O(N~ 1/2).

vol. 32, n° 5, 1998



620 Damniela CAPATINA PAPAGHIUC and Nicolas RAYNAUD

On the contrary, the approximation of the kernel V,; does not hold on unstructured meshes, which yield the poor
convergence of the previous paragraph Indeed, when considering meshes with no verfical interior edge on the
domain €, the constrant 8 v, = 0 imphies v, =0 on €27, thus 1s the case for the mesh of figure 5 This aspect
of locking has been more comprehensively researched in [21] In the next section of this paper, we will focus on
mixed finite element methods to counter locking

4 MIXED METHODS

4.1. The dual mixed formulation

In order to write the mixed formulation of (2), we use the standard technique which we describe below The
ant1 plane displacement u° satisfies the equation

@) —div(A,grad u’)=f,mQ,

1 0

where A_ 1s the 1dentity matrix on Q2 and A, = [ 0 1/e2

:l on 2 We then introduce as unknown

®) p° =A, grad v’

and express variationally this equation as well as the equlibrium relation

&) dvp’ +£=0mQ

Equality (8) shows that p° € H(div, ), where H(div,2) 1s the sub-space of ( L*(Q))*-fields with

L*(Q)-divergence (see [22])
Let us mtroduce the sub-space W of H(div, 2) defined by

W={qe H(div,2),q.v=00nT,},

the partial normal traces being defined in H 2cr ), which 1s the dual space of H (1)32( Iy), wecall H (1){)2( I) the

space of traces on I, of functions from H '(2) which vamsh on 9\I',, Now, the dual mixed formulation of (2)
amounts to solving the following problem

]
(p°,u') e WxLY(Q), Y(qv)e WxL*(RQ)

A 'pt. d9+f W divqdQ=0,
(10) <L . P .q Q q

f v div p° dQ:—f f,vdQ
e e

Let J, be a regular triangulation of € introduced 1 Section 3 For any k € N, we denote by 2, and 2 | the
space of polynomuals of degree at most k, respectively the space of homogeneous polynomials of degree k Let
us recall the defimtion of the Raviart-Thomas polynomial space of order k

RT,=(2,) ® r#?,

M? AN Modelisation mathematique et Analyse numerique
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where x > r(x) is the vector field of coordinates (x,y) of point x. We also introduce the following decom-
position of the Raviart-Thomas space (see [7]):

(11) RT,={qe (2,)5divq=0}® r2,

which will be needed for the numerical solving of the system obtained after hybridization. For any k € N, one
can now define the following finite dimensional spaces:

W,={q, € H(div; 2); VT e T Qur € RT} q, .v=0onT,},
M,={v,e LX(Q);VTe T,,v,,€ 2.}

and write down the mixed discrete formulation of (2) for the Raviart-Thomas method of order k:

.
(p,,u,) e W, xM,, V(q,,v,)e W, xM,

- 1_e& £ 4.
(12) {J.QAe Py -4, d‘Q"'fQ“deqh =0,

J‘ v, div p;, dQ=—J. f,v,d.
Q Q

4.2. Existence and uniqueness
For the sake of clarity, let us introduce further notation. We note the bilinear forms which describe the
continuous mixed problem by c,( .,. ) and b( .,. ), where

Vp,qe W, ca(p,q)=J A;lp.qu,
0

Yve V, Vqe W, b(v,q)zf vdivqdQ.
Q

Since W, c W and M, C Lz(Q), they are obviously well-defined in the discrete case too. The space L2(Q) is

equipped with its classical norm | . [, ,, while W is endowed with the following weighted norm:

lally,.=Cllals o, + lldivallg o).

where for any q = (g,,¢9,) € W we set:

(13) lallg g, = LA; 'q.qd0= fmq .qdQ" + fg[(ql)z +(eq,)’] dQ".

By the means of the Babuska-Brezzi theory (see [22], [8]), the existence and the uniqueness of the solution of
the continuous problem (10) are quite obvious. Therefore, we are only interested in the discrete case. Denoting
the discrete kernel of b( .,. ) by V,, one can easily see that

v,={q, € W, divq, =0}.

vol. 32, n° 5, 1998



622 Daniela CAPATINA-PAPAGHIUC and Nicolas RAYNAUD

Next, we remark that the following two conditions hold:

14) Vg, € V,, c(q,.q,) = alq, |},

b(v,,
(15) inf  sup LS ) =B,

vh€ My q, €W, “U;,Ho,ghqh ‘! W, e

with strictly positive constante «, § independent on ¢ or 4 (in fact, & = 1). The relation (15) is the well-known
discrete inf-sup condition of BabuSka-Brezzi, which assures the compatibility between the finite dimensional
spaces W, and M,. It results easily from standard properties of mixed formulations of 2nd order elliptic problems
(see [8], [22] for instance). So, we can now make use of the Babu$ka-Brezzi theory once again, in order to deduce
the existence and uniqueness of the solution of (12).

4.3. Uniform convergence

Let us first remark that p° is not uniformly bounded in H (Qtun) (cf. [20]). So, the direct application of
classical error estimates given by the mixed methods theory does not yield a uniform bound of the error. In order
to elude this difficulty, we shall make use of the limit problem (4). See also [10] for further details and equally
for a different approach, via nonconforming methods.

More precisely, we establish here the uniform convergence of (p; , u),), the unique solution of (12), towards

(p°, u°). To do that, we shall first study the weak limit of (p:l ,u,) as € > 0 and & — 0. We need the lemmas
below:

LEMMA 4.1: The next statements hold:

Jze LA(Q), Zh‘% u, = z weakly in LY(Q),

Ir° e H(div; Q"), Zli:m8 p, =1 weakly in H(div; Q")
ar| € L3 (Q), ﬁlian P, =1, weaklyin L(Q7),

3r, € LA(2), ﬁlié;ng &Py, , = 1, weakly in LY(Q),

at least for a sub-sequence of (&, h).

Proof: Using the first equation of (12), we have:

c,(p; P, ) =—b(u;, pi)=—fgfeuid9,

which translates into || p; “(2), o< Ifillo ol uj |l nescl u |l o, With ¢ a positive constant independent of both
€ and h. Next, the inf-sup condition (15) gives:

. b(u,, q, ) lc.(Py s Qw)]
Bllullo o< sup l__ii_ s erthy Tl

= < I, o0,
4% €W, ”qh ” W, e % €W, ”qh ” W, e T

so one immediately gets that |u,|,, < c and |pj, | 0.0 S ¢. Let us also note that
divp, =—P,f. ae. inQ",

M? AN Modélisation mathématique et Analyse numérique
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STIFF TRANSMISSION PROBLEMS 623
with P, the Lz(.Q)-orthogonal projection from L*(2) to M,, so that we have:
ippii,.<c.

Recalling the definition (13) of the norm || . || 0, 0, » We Obtain the weak convergence results announced previously,
at least for a sub-sequence of (¢, /). )
Let us now introduce the spaces

W'={qe H(div; 2");q.v=00nZX},

W ={qe H(div; 27);q.v=00n X U Iy}
and let us also denote by W, and W, the corresponding discrete sub-spaces:

W, ={q, € W VTe J,,q,, € RT,},

W, ={q, € W;VTe J,,q,; € RT,} .

With the help of the equilibrium interpolation operator (see [22] for more details), one can prove that the functions
of W' and W~ are correctly approached by those of W'Z and W, respectively. We are now able to establish:

LEMMA 4.2: We have the following relations:
ze 'V, dz=0o0nrl),,
r" =gradz ae. inQ",
r, =0z ae.in.
Proof: Let q be any given element of W'. There exists then a sequence q, € W, such that Jim q;, =g,

strongly in H(div; Q7). Defining §, by §, =49, in 2" and §, =0 in 2, we clearly have that , € W,. So,
considering the test-function q, in the first equation of (12), one gets:

(16) f p; -Q, dQ++f u; divg, d2"=0.
Qt fols
Next, passing to the limit when ¢ = 0, ~ — 0 in (16) gives

Vqe W', .[ rt .qd.(f+J~ zdivqdQ =0.
o* Q*

This relation implies that r © = grad z in 27 in the sense of distributions; since r * e (L*(2%))? it comes
that r* =gradz ae. in Q'. By the means of the Green’s formula, we equally obtain that z=0 on
3Q" N Iy,

A similar argument in the domain £ and a passage to the limit in the relation
Vg, € W, , f A;'p; .q, dQ_+f u;, divg, d2" =0
o o
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yields the following statement:
Vqe W, f r q, dQ_+f zdivqdQ2 =0.
o _
With the notation r = (r], 0), we deduce by a similar reasoning as above that:

r =gradzae inQ, z=00nd2 NI, dz=0onl}.

We already know that 20+ € H'(QM), %o € H'(97); we still have to show that z € V.

Since the functions of W, approach correctly those of W, for any q € W there exists a sequence
(49, )y s o © W, such that li_r)r%) q, = q strongly in H(div; £2). So, when ¢ and 4 tend to zero we obtain from the
first equation of (12):

Vqe W, f gradz.qu++f axqudQ_+f zdiqu.(2++f zdivqdQ2 =0.
folt o ol

Thus Green’s formula on Q" and Q7 respectively (and taking q € W with q.v € L*(32), for instance) directly
leads to:

J‘ q.v(z' -7z )ds=0.
z

As a consequence, zZ'=z on X and so z € V,- This concludes the proof. [J

LEMMA 4.3: We have:

_ .0
Z_u7

where u° is the solution of the Ventcel problem (4).

Proof: Let us consider any v € V. Since p, € W, c H(div; 2), we have that:

Lv((pi ) ev—(p, ) .v)ds=0.

Once again, the Green’s formula gives:

+

f p;.gradde++f vdivp;dQ++f pzlaxvd.Q”+J‘ vdivp"dQ =0.
foks Q

When ¢ and & both tend towards zero, we obtain in fact the variational formulation of (4):

Yov e V, J. grad z . grad v dQ" — f
Q+

ot

fde++f 9z90d2 =0.
o

Since (4) has a unique solution u’, we clearly get that z = . As a consequence, the weak convergences
established in Lemma 4.1 hold for all the sequence (&, 4). O
We are now able to prove the following theorem, which is the key part of this paragraph.

THEOREM 4.4: For (f',f ) e H(Q")x H'(R27), we have:

. 3 £ g & _
;}1_1;1})8631]-1‘1[(“1) - P “w,g"' Il _uh”o,g)—o'
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Proof: Let us first notice that, because of the uniqueness of the limit of weakly convergent sub-sequences of
(pj,, u;,) (according to Lemma 4.2 and Lemma 4.3), the convergences established in Lemma 4.1 hold for the
whole sequence (¢, h). Using the definition of | . |, ,, , and the formulation of the mixed problem, we can next
write:

Ip* —p; lg.0.= L]g(u‘ +up)dR -2 LA; 'p°.p; 4.

Passing to the limit as ¢ — 0, 2 — 0, the results of the preceding lemmas lead to:

Eh_l;% ||PE —P; ”0,9,5:0~
h—0

Since
Idiv (p* =1, ) o o= IIf, = Pufillg 0>
by taking (f',f ) € H'(2")x H'(Q") we easily obtain:
a7 lim [|p* - p, lly,.=0.
38
Concerning the primal unknown u°, we get by classical estimates of mixed methods theory that

1\ . 1
I =00 < (1+5) inf, 16 = 0,000+ 10" =B loq.
and since u° is bounded in H 1(.Q) the above relation implies:

(18) lim || —u |, ,=0.
129 nllo, @

-

Let now fix any ¢, € ]0, 1]. Classical error’s estimates for mixed formulations (see [8], [22]) then give, for any
ee [g,1]:

& & € -4 : t . £
107 =} o 1 =l o < (o, 0% =y, + inf = v,00.0)

< ch(|p° |1,9++ |p® |1,9—+ |”El1,9) >

with ¢ a constant independent on ¢ or A. The last inequality can be obtained, for instance, by the means of
equilibrium, respectively Lagrange interpolation. Using now that p° = A, grad u° and that u° is uniformly
bounded in H* (2% U Q7), ¢f. [20], it comes that:

1 ,
[P° | o+ [P° |1 o + 4] 0 S 22 l4¥ll, o < c(e) -
0

Therefore, we have:

sup (IR =0, . + W = 1,0l00) =0

mm
h—>0¢e [g,1

Together with (17) and (18), this yields the announced result. [J
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REMARK 4 1 This result gives the uniform convergence of the mixed method The method 1s thus robust in the

way described by Babuska and Sun 1in [4] Moreover, one can see that the proof 1s valid for any order k € N of
the method O

REMARK 4 2 Taking into account Theorem 2 1 and Theorem 4 4, one can see that we have also proved the
£ & 0 0
strong convergence of (p, ,u,) towards (p ,u ), for the norms || . ||, o, and || . ||, o respectively

Lm (Ip° —2; oo+ 14’ —ullo o) =0
h—0

We recall that po 1s given by the relations below
p’=gradu®m Q*, p’=(3x"0)mQ"

Notice that p° ¢ H(div, ), since there 1s no continuity of the normal traces on X, this explains why the above
convergence of p; takes place only for a weighted norm || . |, o, of (LX(2)) 0

4.4. Mixed hybrid method

The mixed formulation (12) leads to a linear system whose matrix 1s not definite posiive A direct resolution
by the means of Uzawa’s algorithm cannot be applied, since the resulting matrix 1s 11l conditioned for small values
of £¢ A solution 1s then to introduce Lagrangian multipliers, 1in order to relax the continuity constraint contaimned
1n the defimtion of W,, see [8] or [22] This 1dea has also been analyzed 1n [3]

To this end, we need further notation For any T € J,, we denote by T’ any edge of the tnangle T, &, then
denotes the set-wise non-disjoint reunion of all edges of J, Making an abuse of notation, we will write that

2

(& =_II 221"
We can define L, and W, _ | by
L,={), e L*(&,),VT'e &, dyr € Prand 4, =0o0n I},
W, _,={q, € (L*(2))",VT e J,,q,, € RT}}

The key property of W, _ | 1s that there 1s no coupling constraint on 1its elements The new multipliers 4; now
jomn the formulation and describe the coupling of the normal component of p, on the internal edges

(
VTe J,, Vqp € RT(T),

jA;lp:.qT dT+J. u, div q, dT — Ef 2 qp.vdl'=0,
T T r

TeT

19
(19 ﬁVTe T, Yvpe P(T), f v, dv p; dT=—vaTdT,
T T

VYu, € L, Z EfT,uhpf,.vdT’=0

Te J,TeT
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Recalling the results established in [7], the decomposition of the Raviart-Thomas polynomial space (11) allows
us to choose test-functions q; such that divq, =0 on T € gh. This, in turn, leads to a symmetric definite
positive system which is assembled from elementary matrices computed at the element level. More specifically,
this method can be viewed as a non-conforming pseudo-method of order k& + 1 (see [3] or [7] for further details).

4.5. Numerical results

We solve (19) through the lowest-order mixed method, that is for k = 0, over the mesh of figure 5. The degrees
of freedom of the final system are the nodal values at the mid-point of the internal edges of the mesh. On each
edge submitted to a Dirichlet constraint, the value of A} is set to zero.

The multipliers A; approximate the values of u° at the mid-point of the edges of the triangulation. A simple
post-process enables us to recover p;, and u,. This is a local post-process, i.e. it is applied at the element level.

For practical reasons, we choose to show only the approximated values of u; at the vertices of the triangulation,
obtained after a second post-process. The corresponding three-dimensional representation (for ¢ = 10~ ® and for
the same charges (f*,f ) as in fig. 4 and fig. 8) is given below by figure 9.

Figure 9. — Three dimensional representation of ufl (e=10" ¢ ).

The figure 10 gives the rate of convergence of u, — u° when computed over an arbitrary mesh of the type given
in figure 5, while figure 11 represents the rate of convergence of p; — p° for the energy norm || . || w, e In both
cases, the rates of convergence are optimal: O(N~ ?) = O(h). Moreover, we obtain identical curves for &
between 10” ' and 10™ % indeed, the L2( 9)-error on u° as well as the W-error on p° present very little
sensitiveness to the variation of the parameter ¢, which finally give the same significant digits of their logarithms.

As a conclusion, the lowest-order mixed method is loking-free over any regular triangulation.
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t
h

L2 error of u* - u|

10°<e< 10

22 B 1 i
320 1000 3200

Number of unk |

Figure 10. — Convergence rates for "f. in L2 (£2)-norm.
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Figure 11. — Convergence rates for pf. in W-norm.
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