@article{M2AN_1996__30_7_907_0, author = {Dettori, Lucia and Yang, Baolin}, title = {On the {Chebyshev} penalty method for parabolic and hyperbolic equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {907--920}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {30}, number = {7}, year = {1996}, mrnumber = {1423084}, zbl = {0861.65086}, language = {en}, url = {http://www.numdam.org/item/M2AN_1996__30_7_907_0/} }
TY - JOUR AU - Dettori, Lucia AU - Yang, Baolin TI - On the Chebyshev penalty method for parabolic and hyperbolic equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1996 SP - 907 EP - 920 VL - 30 IS - 7 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1996__30_7_907_0/ LA - en ID - M2AN_1996__30_7_907_0 ER -
%0 Journal Article %A Dettori, Lucia %A Yang, Baolin %T On the Chebyshev penalty method for parabolic and hyperbolic equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1996 %P 907-920 %V 30 %N 7 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1996__30_7_907_0/ %G en %F M2AN_1996__30_7_907_0
Dettori, Lucia; Yang, Baolin. On the Chebyshev penalty method for parabolic and hyperbolic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 30 (1996) no. 7, pp. 907-920. http://www.numdam.org/item/M2AN_1996__30_7_907_0/
[1] Theory and application of spectral methods, in : R. VOIGT, D. GOTTLIEB and M. Y. HUSSAINI, ds., Spectral Methods for Partial Differential Equations (SIAM-CBMS, Philadelphia, PA, 1984, pp. 1-94. | MR | Zbl
, and , 1984,[2] Polynomial approximation of differential equations, Springer-Verlag. | MR | Zbl
, 1992,[3] Domain decomposition methods for pseudospectral approximations. Part One : Second order equations in one dimension, Numr. Math., 52, pp. 329-344. | EuDML | MR | Zbl
, 1988,[4] Spectral Methods in Fluid Dynamics, Springer-Verlag. | MR | Zbl
, , and , 1988,[5] The Chebyshev-Legendre method : implementing Legendre methods on Chebyshev points, SIAM J. Numer. Anal., 6, pp. 1519-1534. | MR | Zbl
and , 1994,[6] A new method of imposing boundary conditions for hyperbohc equations, Math. Comp., 51, pp. 599-613. | MR | Zbl
and , 1988,[7] Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment, Math. Comp., 57, pp. 585-596. | MR | Zbl
and , 1991,