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MATHEMATICA!. MODELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, nû 7, 1996, p. 907 à 920)

ON THE CHEBYSHEV PENALTY METHOD FOR PARABOLIC
AND HYPERBOLIC EQUATIONS (*)

b y L u c i a D E T T O R I (») a n d B a o l i n Y A N G (»)

Abstract. -— We propose, in this article, sève rai versions of the penalty method for the
pseudospectral Chebyshev discretization of hyperbolic and parabolic équations. We demonstrate
the stabilityfor a range of the penalty parameter. For the hyperbolic équation wefind the optimal
estimate for the parameter, whereas the esttmate for the parabolic case is not optimal.

Résumé. — Plusieurs versions de la méthode de pénalisation sont proposées pour une dis-
crétisation pseudospectrale Chebyshev d'équations hyperboliques ou paraboliques. On montre la
stabilité lorsque le paramètre de pénalisation est dans un intervalle. Nous estimons la valeur
optimale du paramètre dans le cas hyperbolique, tandis que notre estimation n 'est pas optimale
dans le cas parabolique.

1. INTRODUCTION

Boundary conditions pîay a crucial rôle in spectral and pseudospectral
methods. One way of applying a collocation method to a partial differential
équation is to satisfy the équation at the interior points and impose boundary
conditions at the boundary points. An alternative way is to collocate the
differential équation at all the grid points and introducé the boundary condi-
tions as a penalty term.

The main différence between the two methods is that, in the latter, the
boundary conditions are not satisfied exactly but only at the limit. The penalty
method, in the context of a Legendre collocation approximation of a linear
hyperbolic Systems, has been first inroduced by Funaro and Gottlieb in [7]. In
[6] the case of a Chebyshev penalty method for a scalar hyperbolic équation
has been studied.

In this paper we present first a Chebyshev penalty method for a linear
hyperbolic équation. The method differs from the one considered in [6] in the
functional form of the penalty term. In our method the penalty term is non zero
also at the interior points ; which introduces a correction at all the interpolation

(*) Manuscript received October 17, 1995.
(') Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912,

USA.

M2 AN Modélisation mathématique et Analyse numérique 0764-5 S3X/96/07/S 7.00
Mathematical ModeHing and Numerical Analysis © AFCET Gauthier-Villars



908 L. DETTORI, B. YANG

points. We prove stability of the semidiscrete scheme in the appropriate norm
and we give an optimal estimate of the penalty parameter. We present also a
new Chebyshev penalty method for a linear parabolic équation and we prove
the stability of the scheme in Lw corresponding to the Chebyshev weight
function<ü(jc) = (1 -x2)" 1/2.

The paper is organized as follows. In Section 1 we present some Standard
results on Chebyshev approximation. Section 2 is devoted to a new version of
the Chebyshev penalty method for linear hyperbolic équations. Stability of the
scheme is proven. In Section 3 we consider a Chebyshev penalty method tbr
a linear parabolic équation. Stability of the scheme in the usual L2^ norm is
proven. In Section 4 we present some numerical results for the Maxwell
équation.

2. PRELIMINAIRES

In this section we summarize the notation and some gênerai results regard-
ing the Chebyshev polynomials. For an overview of those results the reader
is referred to [1, 4] and [2]. In the article we will work on the following space :

PN = {polynomials of degree ^ TV} . (1)

We dénote by TN the Chebyshev polynomial of degree N,

TN(x) = cos (vVcos-1*) .

Throughout the article we will make use of the following formulas :

T _ (3)
k- 1 ' K '

xTk = {(Tk+,+Tk_{)- (4)

and the orthogonality property :

(5)

We will use the Gauss Lobatto set of collocation points :

^ = cos (S i ) , O^j^N. (6)
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CHEBYSHEV PENALTY METHOD 909

2These points are the zéros of (1 - x2)T'N(x). Associated to this set of
collocation points we define the discrete scalar product ( • , • )N :

where

If fg e P2yv_i we have :

N

f(x) g(x) w(x)dx= 2 ƒ(*?) ?(<) w,. (9)

= ( l -x2)~m.

3. HYPERBOLIC EQUATIONS

In this section we present a Chebyshev penalty method for the linear
hyperbolic équation.

? > 0 , (10)
JC e ( - 1, 1 ) .

We seek an approximate solution u in the space P ^ . , that satisfies :

> (11)

at the points **, 0 ^ j ^ N. Note that the penalty term T'N(x) is zero at the
interior points but it is non zero at both boundary points. A different Cheby-
shev penalty method for équation (10) has been studied in [7], where the

(\+x)T'N(x)
penalty term was 5 .F 2N2
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910 L. DETTORI, B. YANG

Remark 3.1 : In a similar way we can define a penalty method for the
équation

= -vx, x e ( - 1, 1 ) , r > 0 ,

In this case the penalty term would be :

_ T ( M ( - 1 , O - 0 ~ ( O ) ^ ^ . (13)

The extension to this case of all the results is straightforward.
As shown in [1], problem (10) is not well posed in the usual Chebyshev

norm, corresponding to the weight function co(x) = ( 1 - x2y 1/2. Instead
we prove stability in the norm corresponding to the weight function

w(x) = ( 1 -hx)œ(x) = ( 1 + x ) I / 2 ( l ~x)~m. (14)

THEOREM 3.1 : (Coercivity) Let u e PN_j and coö = n/2N be the Cheby-
shev weight defined in (8). Then

I ux(x) u(x)œ(x)dx ^ TCO0U
2(\) , (15)

provided x satisfies

T ^ . (16)

Remark 3.2 : Note that in the penalty method (11) the approximate solution
u does not satisfy the boundary condition exactly but only as /V tends to «>.

Remark 3.3 : Let f(x) be a function such that

lim œ(x)f(x) = 0, (17)

then we can prove the following coercivity property

)œ(x)dx^0. (18)

In our case the function u(x) does not satisfy zero boundary conditions and
(18) does not hold. However, as shown in Theorem (3.1), coercivity can be

M2 AN Modélisation mathématique et Analyse numérique
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CHEBYSHEV PENALTY METHOD 911

proved, if we restrict the set of functions to polynomial and we impose a
condition on the penalty term. This is sufficient for our purpose since we will
use Theorem(3.1) for the solution of (11), w(x), which is a polynomial.

Proof (of the Coercivity Theorem) : Let us define

U(x) = u(x)-u(\)TN(x). (19)

It is clear that U{ 1 ) = 0. We write :

u(x)ux(x) (1 + x)co(x)dx = U(x) Ux(x) œ(x) dx

+ w( 1) ƒ u(x)TN(x)(\ +x)oj(x)dx

ux(x)TN(x)(\ +x)œ(x)dx

+ u\ 1 ) ƒ ^ TN(x) rN(x) (l+x)ù)(x)dx. (20)

Due to the orthogonality property (5) and the fact that ux(x) e P/v_ 2 we have :

J u(x)T'N(x)(\ +x)co(x)dx = 0=\ TN(x)T'N(x)codx. (21)

Combining Remark (3.3), (4) and (9) we obtain :

I u(x) ux(x) œ (x) dx ̂  nNu\l)~—^ I TN_X TNœ(x)dx

\l)~^Nu2(]) ^ ^Nu2(\) . (22)

Therefore we obtain :

u(x) ux(x) w (JC) dx - xœ0 u
2(\ ) ̂  ( f - ^ (23)

We conclude that if (16) is satisfied (15) holds. Q

vol. 30, n° 7, 1996



912 L. DETTORI, B. YANG

Using the previous Lemma we can prove the following stability result for
the scheme (11).

THEOREM 3.2 : Let u be the solution of (10) with g + = 0. Ifr satisfies (30)
then the Chebyshev penalty method is stable in L^. More precisely,

iJXC^Ml+^a^O. (24)

Remark 3.4 : The condition on the penalty parameter is optimal in this case.
This can easily be seen by taking, for example, w(x) - TN_ x(x).

4. PARABOLIC EQUATION

Consider the équation :

x e ( - 1 , 1 ) , t>0,

•g + ( t ) , t > 0 , (25)
x e ( - 1 , 1 ) .

We present a penalty method in the following way : we seek an approximate
solution u in the space P^ that satisfies :

(1 + x ) T ' ( x )

(ï -x)r'(x)
- zN( u(- 1 ) - g' ( f ) ) ^ 2

J
N2

NK , (26)

at the points x^, 0 ̂  j ^ N.
Remark 4.1 : Note that in the penalty method (26) the approximate solution

u does not satisfy the boundary conditions exactly but only as N tends
tO co.

Remark 4.2 : Let f(x) be a function such that

j eUm icü(x)/[x)=0, (27)

we can prove the following coercivity property

LAx)fxx{x)(o{x)dx^Q. (28)
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CHEBYSHEV PENALTY METHOD 913

In our case the function u(x) does not satisfy zero boundary conditions and
(28) does not hold. However, a similar resuit holds, if we restrict the set of
functions to polynomials and we impose a condition on the penalty terms
T0 and TN. This is sufficient for our purpose since wc want to apply the resuit
to the solution of (26), u(x), which is a polynomiaL

The crucial step in proving the stability of the scheme (26) is given by the
following Theorem.

THEOREM 4.1 : (Coercivity) Consider a polynomial u e P^ and let
œQ = coN = n/2 N be the Chebyshev weights defined in (8), then

V 2 9
u(x) u^ix) œ(x) dx ̂  toœou(\ ) + rNcoNu(- 1) , (29)

J -î

provided that r0 and zN satisfy

Remark 4,3 : In the case where u( ± 1 ) = 0 (29) becomes (28) and the
coercivity follows from standard arguments.

Remark 4.4 : Numerical computations suggest that the condition on the
coefficients T0 and xN is not optimal. As we will show later on (see (45)) there
are cases where the choice of T0, TN=O(N ) is sufficient to guarantee
stability of the penalty method.

In order to prove the Coercivity property (29) we define two boundary
polynomials P + (x) and P~ (JC),

2(p-

Tq_

2(q-

2(P-

1)

1)

1) 2 ( 9 - l ) | '

where we assume that p is even and q is odd.
The following Lemma collects all the important properties of the two

boundary polynomials.

vol. 30, nD 7, 1996



914 L. DETTORI, B. YANG

L E M M A 4.1 : Let P + (x) and P~ (x) be defined as In (31) ; then

( 3 2 )

p + ( l ) = ƒ > - ( 1 ) = 1 , P + ( - l ) = p - ( l ) = 0 .

In the proof of the Coercivity Theorem (4.1) we will need that

P ± are œ - orthogonal toPN_2, (34)

therefore we choose :

p = N, q = N+ 1 . (35)

Proof: (of the Coercivity Theorem) Let us define

U(x) = u(x) - u( 1 ) P + (x) -u(-\) P- (x) ; (36)

from (33) it is clear that U( ± 1 ) = 0. Therefore, using (34), we get that

f' f1

I u(x) urr(x) CÜ(X) dx- | U(x) U (x) œ(x) dx
J - 1 "'" J - 1

f' + f1

u( i ) wPyr œ(x) dx + M ( - 1 ) uPYY CÜ(X) dx
J - i J - i

Let us evaluate the second and third intégral in the RHS of (37). Using (32)
and (9) we can rewrite the intégrais as discrete scalar products based on
p + 1 and q + 1 points respectively and get :

M( 1 ) MP * œ dx + u( - 1 ) wP ~ o» dx

~ 1 ) [<A 1 ) - 2 «( 1 ) w( - 1 ) + u\- 1 )]

~ 1 ) [M2( 1 ) + 2 M( 1 ) M ( - 1 ) + W
2 ( - 1 )]

0 . (38)

M2 AN Modélisation mathématique et Analyse numérique
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Consider now the last intégral in the RHS of (37). We start by evaluating

f '
P+ P*xœ(x) dx. Using (31), (5) and switching to the discrete scalar- - 1

products, we obtain

- f *>(ƒ> + O O?2- l ) - f q(q+ O U 2 - O -
(39)

Note that, due to the fact that p is even and q is odd, the « mixed » intégrais
are zero. For example :

^ ^ ^ r ( x ) ^ = 0 - (40)

ït is easy to see that :

P~ P~xcü(x)dx=\ P+ P+Kco(x)dx. (41)

f' f' -
In a similar way we evaluate P+ Pvv œ(x) dx and P P+

XK œ{x) dx
i -1 " J -1

to

- ƒ ^(u(\)P+ +u(-\)P~ )(u(\)P+ +u(-\)P~ )xxa>(x)dx =

= u\ 1 ) f [p(p + 1 ) (p2 - 1 ) + q(q + 1 ) (q2 - 1 )]

- M( 1 ) M ( - 1 ) | [p(p + 1 ) (p2 - 1 ) + q(q + 1 ) (^2 - Î )]

+ * 2 ( - 1 ) f [p(p + O (P2 ~ 1 ) + q(q + 1 ) U 2 - 1 )] - (42)

Therefore, choosing p ~ N and q = N + \ we conclude that if (30) is
satisfied (29) holds. D

Theorem (4.1) yields the stability of the scheme (26) in the norm corre-
sponding to the weight function w(x) = ( 1 — x~Y I/2.

vol. 30, n° 7, 1996



916 L. DETTORI, B. YANG

THEOREM 4.2 : (Stabllity of the penalty method) Let u be the solution of
(26), with g+ — g~ = 0. If r0 and rN satisfy (30), then the Chebyshev penalty
method is stable in the Lœ norm. More precisely,

ffI>
2(*;)^0. (43)

j = 0

Proof : Taking the discrete scalar product of (26) with u(x) we obtain :

-fi. ̂  u (xj ) °>j = ( "«' w);v - To ̂ o «2( ! ) - ^ ^ w2(- 1 ) . (44)

Since uuxx^ P2^-i w e c a n aPP^y W- The result then follows from the
Coercivity Theorem. n

As pointed out in Remark (4.4), we believe that the optimal value of the
parameters T0 and TN is of order N4. We are unable to prove this in the gênerai
case at this time but we can show that it is true in the case of a particular
choice of the penalty term. This result will be true only in the case of a
constant coefficient linear parabolic équation. Let us consider the problem
(25). We seek an approximate solution u in the space P^ that satisfies :

7" ( x ) + T" ( x )
4

-zN(u(-\,t)-g ) „^4 (45)

at the points xj, 0 ̂  j ^ N.

The stability of the scheme relies on the following Lemma.

LEMMA 4.2 : Consider a polynomial u e P^, then

f Ujx) U(X) CO(X) dx $ «(1) f U(X) TN+2(X)+^TN+l(X) c o ( x

C1 T" (xï - T" (x}
+ « ( - 1 ) U(X)IN^{XJ "+M)œ{x)dx.

J -ï 2(— 1 )
J œ{x)dx. (47)
2(— 1 )

M2 AN Modélisation mathématique et Analyse numérique
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Proof : Let us define

t / (*) = W ( * ) - M ( 1 ) 2 ™ W(^~ ^ 2f- 1 V* '

(48)

It is clear that

U(±l) = 0. (49)

Note that « ^ O ) is orthogonal to {TN + 2(x)> TN+l(x)} and
l:r/v + 2 ( x ) ' : r / v + i ( x ) } i s orthogonal to {T^ + 2(x),T'^ + , (* )}• Therefore we
obtain :

u{x) ujx) œ(x) dx = j U(x) Uxx(x) co(x) dx

, ^ r ; + 2 ( x ) r ; + 1(x)
u(x) ———û co(x)dx.

-ï 2 ( - 1)
(50)

The result now follows from Remark (4.2). D
Lemma (4.2) yields the stability of the scheme (45) in the norm corre-

sponding to the weight function co(x) = ( 1 — z 2 )" 1/2.

THEOREM 4.3 : (Stability of the penalty method) Let u be the solution of (45)
with g+ = g~ = 0 . /ƒ T0 and xN satisfy

TO = N \ xN = N\ (51)

then the Chebyshev penalty method is stable in L^y More preeisely,

u{x)co{x)dx^0. (52)

vol. 30, n° 7, 1996
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Proof : Multiply both sides of (45) by u(x) co(x) and integrating we get :

f1 f'1 / f f
u2(x) <"(*) dx = uxx(x) u(x) co(x) dx

/V

- T ^ W ( - O ——rr^
Tv J - i 2 ( - 1 )

The results follows from Lemma (4.2) provided (51) is satisfied. D

5. NUMERICAL EXPERIMENTS

Consider the Maxwell équation

with the initial condition

E(x,0)=-esin{2Kx) (55)

We have the following exact solution

E(x, ,) = _^(2«(^"» (56)

//(x)f) = v^ s i n l

We will use the exact solution to impose the boundary condition along
incoming characteristic. Thus we are indeed solving two scalar hyperbolic
équations. One has positive eigenvalue Vqj and the other has négative
eigenvalue — Vejü. We will use third order R-K scheme for time intégration.
In computation, take e = 2, ju = 1, c = 1.

In numerical computation it is verified that the Method (11) is stable as long

2'
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Figure 1. — Numerical Solution : New Chebyshev Penalty Method (T = 1/2).
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Figure 2. — Numerical Solution : New Chebyshev Penalty Method (T = 1/2).
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