@article{M2AN_1996__30_4_401_0, author = {Zhou, Aihui}, title = {Global superconvergence approximations of the mixed finite element method for the {Stokes} problem and the linear elasticity equation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {401--411}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {30}, number = {4}, year = {1996}, mrnumber = {1399497}, zbl = {0858.73076}, language = {en}, url = {http://www.numdam.org/item/M2AN_1996__30_4_401_0/} }
TY - JOUR AU - Zhou, Aihui TI - Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1996 SP - 401 EP - 411 VL - 30 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1996__30_4_401_0/ LA - en ID - M2AN_1996__30_4_401_0 ER -
%0 Journal Article %A Zhou, Aihui %T Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation %J ESAIM: Modélisation mathématique et analyse numérique %D 1996 %P 401-411 %V 30 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1996__30_4_401_0/ %G en %F M2AN_1996__30_4_401_0
Zhou, Aihui. Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 30 (1996) no. 4, pp. 401-411. http://www.numdam.org/item/M2AN_1996__30_4_401_0/
[1] The finite element method with Lagrangian multiplies, Numer. Math., 20, pp. 179-192. | MR | Zbl
, 1973,[2] A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow, M2AN, 26, pp. 331-345. | Numdam | MR | Zbl
and , 1992,[3] On the existence, uniquence and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Anal. Numer., R-2, pp. 129-151. | Numdam | MR | Zbl
, 1974,[4] A survey of mixed finite element methods, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 34-49. | MR | Zbl
, 1986,[5] Mixed and Hybrid Finite Element Methods, Springer-Verlag. | MR | Zbl
and , 1991,[6] On the stabilization of finite element approximations of the Stokes equations, in : Efficient Solutions of Elliptic Systems, Notes on Numer. Fluid Mech., 10 (ed. Hackbush), Vieweg, Wiesbaden, pp. 11-19. | MR | Zbl
and , 1984,[7] The Finite Element Methods for Elliptic Problems, North-Holland. | MR | Zbl
, 1976,[8] Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I), North-Holland, Amsterdam. | MR | Zbl
and , 1991,[9] On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comp. Meth. Appl. Mech. Engrg., 73, pp. 341-350. | MR | Zbl
and , 1989,[10] Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, pp. 259-273. | MR | Zbl
, 1989,[11] Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, pp. 89-129. | MR | Zbl
and , 1988,[12] Error analysis of some Galerkin-least-sequares methods for the elasticity equations, SIAM J. Num. Anal., 78, pp. 1680-1697. | MR | Zbl
and , 1991,[13] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag. | MR | Zbl
and , 1986,[14] On a mixed finite element approximation of the Stokes problem I, Convergence of the approximate solution, Numer. Math., 33, pp. 397-424. | MR | Zbl
and , 1979,[15] Mathematical aspects of finite element methods for incompressible viscous flows, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 124-150. | MR | Zbl
, 1986,[16] Finite Element Methods for Incompressible Viscous Flows : A Guide to Theory, Pratice and Algorithms, Academic, Boston. | MR
, 1989,[17] On mixed mesh finite elements for solving the stationary Stokes problem », Numer. Anal. J. Chinese Univ., 14, 3, pp. 287-289 (Chinese). | MR
and , 1992, Notes on «[18] A rectangle test for the Stokes equations, in : Proc. of Sys. Sci. & Sys. Eng., Great Wall (Hongkong), Culture Publish Co., pp. 240-241.
, and , 1991,[19] A rectangle test for interpolated finite elements, ibid., pp. 217-229.
, and , 1991,[20] The Proeprocessing and Postprocessing for the Finite Element Method, Shangai Scientific & Technical Publishers (Chinese).
and , 1994,[21] Analysis of mixed finite element method for the Stokes problem : a unified approach, Math. Comp., 42, pp. 9-23. | MR | Zbl
, 1984,[22] Postprocess schemes for some mixed finite elements, RAIRO Model. Math. Anal. Numer., 25, pp. 152-168. | Numdam | MR | Zbl
, 1991,[23] Navier-Stokes Equations, North-Holland, Amsterdam. | Zbl
, 1979,[24] Error estimates for a mixed finite element approximation of the stockes equations, RAIRO Numer. Anal., 18, pp. 175-182. | Numdam | MR | Zbl
, 1984,[25] The full approximation accuracy for the stream function-vorticity-pressure method, Numer. Math., 68, pp. 427-435. | MR | Zbl
and , 1994,[26] On the full approximation accuracy in finite element methods, in : Proc. Symposium on Applied Math. for Young Chinese Scholars (ed. F. Wu), Inst. of Applied Math., Academia Sinica, Beijing, July, pp. 544-553.
, and , 1992,