@article{M2AN_1992__26_2_331_0, author = {Baranger, J. and Sandri, D.}, title = {A formulation of {Stokes's} problem and the linear elasticity equations suggested by the {Oldroyd} model for viscoelastic flow}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {331--345}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {2}, year = {1992}, mrnumber = {1153005}, zbl = {0738.76002}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_2_331_0/} }
TY - JOUR AU - Baranger, J. AU - Sandri, D. TI - A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1992 SP - 331 EP - 345 VL - 26 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1992__26_2_331_0/ LA - en ID - M2AN_1992__26_2_331_0 ER -
%0 Journal Article %A Baranger, J. %A Sandri, D. %T A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow %J ESAIM: Modélisation mathématique et analyse numérique %D 1992 %P 331-345 %V 26 %N 2 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1992__26_2_331_0/ %G en %F M2AN_1992__26_2_331_0
Baranger, J.; Sandri, D. A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 2, pp. 331-345. http://www.numdam.org/item/M2AN_1992__26_2_331_0/
[1] A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity, Numer. Math., 45, 1-22 (1984). | MR | Zbl
, and ,[2] Error-bounds for Finite Element Method, Numer. Math., 16, 322-333 (1971). | MR | Zbl
,[3] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Model. Math. Anal. Numér., 8, 129-151 (1974). | Numdam | MR | Zbl
,[4] The Finite Element Method for Elliptic Problems, North-Holland (1978). | MR | Zbl
,[5] Approximation by finite elements using local regularization, RAIRO Modél. Math. Anal. Numér., 8, 77-84 (1975). | Numdam | MR | Zbl
,[6] An absolutely stabilized finite element method for the Stokes problem, quoted in [12]. | Zbl
and ,[7] A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989). | Zbl
and ,[8] On the convergence of the mixed method of Crochetand Marchal for viscoelastic flows, to appear. | MR | Zbl
and ,[9] Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, 259-273 (1989). | MR | Zbl
,[10] Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, 89-129 (1988). | MR | Zbl
and ,[11] Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity, to appear in Appl. Mech. Rev. | MR | Zbl
, ,[12] Error analysis of some Galerkin-least-squares methods for the elasticity equations, Rapport INRIA, n° 1054 (1989). | Zbl
and ,[13] Finite Element Methods for Navier-Stokes Equations, Theory and algorithms, Springer Berlin (1978). | MR | Zbl
and ,[14] A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114 (1987). | Zbl
and ,[15] Norm estimates for a maximal right inverse ofthe divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19, 111-143 (1985). | Numdam | MR | Zbl
and ,[16] A Family of Mixed Finite Elements for the Elasticity Problem, Num. Math., 53, 513-538 (1988). | MR | Zbl
,[17] Error Analysis of some Finite Element Methods for the Stokes Problem, to appear. | MR | Zbl
,