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CONVERGENT ITERATIVE METHODS
FOR THE HARTREE EIGENPROBLEM (*)

by G. AUCHMUTY C1) and WENYAO JIA (2)

Communicated by P.-L. LIONS

Abstract. — This paper develops some new vanatwnal principles for the solutions of Hartree
eigenproblems and uses these characterizations to describe convergent itérative algorithms for
these problems This is done first for-helium and thenfor gênerai atoms and molécules The
vanatwnal principles involve minimizing separate ly convex functwnals over the product of
convex sets By mimmizing in different variables at each step, we are led to descent methods
where at each step there is a stnctly convex problem with a unique solution The resulting
séquence is shown to converge to a solution of the Hartree eigenproblem

Résumé — Cet article développe de nouveaux principes vanatwnnels pour les valeurs
propres du problème de Hartree et les fonctions propres correspondantes II utilise ces
représentations pour déduire des algorithmes itératifs convergents Ceci est fait tout d'abord
pour Vhélium puis pour d'autres atomes et molécules Les principes vanatwnnels nécessitent de
minimiser séparément des fonctionnelles convexes sur le produit d'ensembles convexes En
minimisant dans différentes variables à chaque pas, nous sommes amenés à des méthodes de
descente où à chaque pas il y a un problème strictement convexe avec une solution unique On
montre que la séquence qui en résulte converge vers une solution du problème d'origine

1. INTRODUCTION

The Hartree and Hartree-Fock eigenproblems provide quantum mechanical
models of atoms and molécules which are more tractable than the full
Schrodmger équations for these Systems. They have been extensively used
for computational modelmg since their introduction by Hartree, Fock and
Slater [10], [7] and [21] in the early days of quantum theory.

Recently there has been extensive mathematical work on these problems.
One of the first ngorous results appeared in 1970 when Reeken [20] used
bifurcation theoretic methods to prove existence of solutions for the Hartree
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576 G. AUCHMUTY, WENYAO JIA

équations for the Helium atom. Since then Lieb and Simon [13] and [14], and
P. L. Lions and coworkers [9], [15]-[16] have developed a comprehensive
theory of these équations.

Despite the enormous amount of computations that have been done on
these problems, there appear to be few results on the validity of numerical
methods for this problem. De Loura [17] has described a method for the
Helium atom and proves some convergence resuits ; in particular he showed
that if the problem is solved on a family of balls of increasing radii
Rn, with Rn increasing to infinity, then the corresponding minimizers
converged to the solution of the original problem [17], (Theorem 2.2). In
conséquence here we shall look at itérative methods for these problems with
IR3 replaced by balls of finite radius and with Dirichlet boundary conditions
imposed at the boundary.

This paper will develop, and prove the convergence of, some itérative
algorithms for approximating solutions of the Hartree eigenproblem restricted
to a finite bail. To do this we will introducé some new formulations of the
problem. The usual formulation of these problems is similar to Rayleigh's
principle for finding eigenvalues and eigenvectors of self-adjoint linear
elliptic operators. It involves minimizing a non-convex, quadratic functional
on the unit sphère in L2. Here we shall descnbe some different variational
principles which have the same critical points and which involve minimizing
the différence of two convex functions on a convex set. These are detailed in
Sections 5 and 6 for the case of helium and in Sections 9 and 10 for the
gênerai case.

The methods described in Auchmuty [3] are then used to describe
algorithms for finding critical points of these modified variational principles
and also for proving convergence of the resulting itérative séquences to
solutions of the Hartree eigen-problem. This is done for helium in Section 7
and for the gênerai case in Sections 11 and 12. The helium case involves a
scalar unknown wave-function while in the gênerai case the wave functions
will be vector-valued. The algorithms described here are different to the
original method proposed by Hartree and to those currently used for the
computation of these solutions by chemists. The questions of the theoretical
convergence of their methods appears to be still open.

2. FORMULATION OF THE PROBLEM

We shall treat the usual quantum mechanical nonrelativistic Coulomb N-
body problem modeling N électrons interacting with K static nuclei. The
Hamiltonian for this system is

= ' Z {k
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ITERATIVE METHODS FOR THE HARTREE EIGENPROBLEM 577

where

k= i \x — a |

and x= (xj, ..., xN) with each Xj in U3. Hère each zk > 0, a(k) is in
R3 and we are using appropriate quantum units.

The function V (x) represents the potential at a point x due to the
K nuclei of charges zx, ..., zK, at positions aa\ ..., a^K) in space. The last
term in (2.1) models the répulsive interaction between pairs of électrons.

Let Ll(U3N) be the space of all anti-symmetric, complex valued functions
defined on IR3 N with the usual L2-inner product. A function <P is antisymmet-
ric, if whenever cr is a permutation of {1, 2, ..., N}, then

# ( . * „ „ „ . . . , * „ , „ , ) = ( - l ) 1 " 1 ^ ( x „ ..., ^ ) ( 2 . 3 )

where | a \ = ± 1 is the signature of cr. This is a closed subspace of

The usual problem is to find the eigenvalues and eigenfunctions of
H considered as a linear operator on L%(M3N). These are characterized as the

extrema of the quadratic form Jf7 : Ll(U3N) -• IR defined by

Ju3N L 2

_ _ ix <2-4)
* = l \ J = t + \ \xl ~ xj\ / J

on the sphère
r r }

0(x)\2dx = 1 . (2.5)

Here | | represents the Euclidean norm, V 0 (x ) is the gradient of
<P in M3N and this functional Jf? is taken to be + oo when 0 is not in the
Sobolev space Hl(M3N).

The Hartree approximation to this problem ignores the requirement of
antisymmetry and assumes that

0(xu ..., xN) = !"[<£/(*,) (2.6)

with each <f>} in L2(U3) obeying

f 2
I <£,(*)! dx = 1 . (2.7)
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578 G. AUCHMUTY, WENYAO JIA

Hartree's problem (J^a) is to extremize the functional

, = 1 JU* L Z J

. f f \*M'\*,W\^ (2.8)

on the set
SN = {(<f>u ..., <£*): 4>} sHl(U3) and <£, obeys (2.7)

for 1 **j ^N} . (2.9)

The value

#o= inf $(<P) (2.10)

will be the Hartree estimate of the ground state energy of the problem.
The Euler-Lagrange équations imply that the extrema of (2.8) subject to

(2.9) are solutions of

(2.11)
\x y\

on IR3 where A = (Al9 ..., A^) are the energy levels corresponding to the
eigenstate <f>t(x), 1 =s= / ^N. Mathematically the A, are Lagrange multipliers
arising from the N constraints of the form (2.7).

For our numerical purpose, we shall restrict attention to the case where
R3 is replaced by the closed bail BR centered at the origin and of radius
R. Thus we shall treat the problem of minimizing S {<P) on SN, where the
domain of the functions is BR and the intégrais in (2.7) and (2.8) are over
BR in place of IR3. This is necessary for our analysis as we will repeatedly use
various compact embedding results that require the domain to be bounded. It
is justified by the results of de Loura [17]. For actual computation one would
expect to choose R sufficiently large that the eigenfunctions of interest obey

|<£,(x)| < e for |JC| ~sR .

Spécifie estimâtes of R depend on having good decay estimâtes for the
eigenfunctions — such results are not currently known to the authors but
would be useful information. Henceforth whenever no domain of intégration
is indicated, the intégrais should be taken over BR.

In sections 4-7 we shall first describe our methods and results for the

M2AN Modélisation mathématique et Analyse numérique
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ITERATIVE METHODS FOR THE HARTREE EIGENPROBLEM 579

Helium atom. This has N = 2, zx = 2, we can assume u = <pl = <fi2

Then the Hartree functional is

f r i , / i , \ oi
g(u) = ^ I VM 12 — ( V{x)-~Q{u2){x)\ u{xf\ dx (2.13)

where

, W ° ; )
I rfy (2.14)

and V is defined by (2.12). The problem (Jfe) is to find ù in

^ - \ueHl(BR): ï \u\2 dx = 1 (2.15)

which minimizes ^ on ^ and to evaluate the minimal energy

<f0 = <ƒ(«)= inf <f ( M ) . (2.16)

In this problem # is a non-convex functional and £f is an unbounded and
non-convex set.

3. NOTATION AND MATHEMATICAL BACKGROUND

All the functions used henceforth will be real valued. U is the set of real
numbers and R = U U {±00} is the extended reals. | | will dénote a
Euclidean metric, while || || will dénote the Lp-norm. Whenp is omitted,
it should be taken to be 2. The symbol C dénotes a constant which need not
be the same each time.

We shall use many standard results from functional analysis and the
calculus of variations. When a term is used without définition, it should be
taken as in Zeidler [23] or Blanchard and Brüning [4],

The Sobolev spaces Hl(BR) and HQ(BR) are defined in the usual manner
with their norms given by

JB
+ \u\2]dx.

vol. 28, n° 5, 1994



580 G AUCHMUTY, WENYAO JIA

The Sobolev embedding theorems in 3-dimensions say that the embedding
/ : HQ(BR) -> LP(BR) is a continuous linear map when 1 =sp =s 6 and that it is
compact when 1 ̂ p < 6. We shall repeatedly use Hardy's inequality (see
page 41 of [11]), that

(3.1)

whenever O is an open set in W1 and w is in Hl (12 ).
The space HQ(BR ; R*) will dénote the Cartesian product of N copies of

Hl(BR). Let Se = {u e Hl(BR) : ||u|| = 1} and Sf N = ïf x • • • x £f be the
Cartesian product of Af copies of £f. These are the sets defined in (2.15) and
(2.9) and are the domains for the Hartree variational principles.

LEMMA 3.1 : £f is weakly closed in HQ(BR) and £fN is weakly closed in
Hl(BR;RN).

Proof : Let {un : n 2= 1} be a weakly convergent séquence in ¥ which
converges weakly to u in H\(BR\ Then un converges strongly to u in
L2(BR) as the embedding is compact. Thus ||w|| = 1 and so Sf is weakly
closed. Similarly in the vector valued case. •

When a séquence {un : n ^ 1 } in a Banach space X converges strongly to a
limit u in X we shall write un -> w. Weak convergence will be written
un — u.

We shall repeatedly use some Ehrling-type inequalities. Since all the
proofs we have seen are via contradiction we will give a constructive proof
shown to us by John Froelich [8].

THEOREM3.1 :LetX, Y and Z be Banach spaces and 1, j be mappings from
X to Y and from Y to Z respectively, Ifi is linear, 1 — 1 and compact and j is
linear, 1 — 1 and continuous then for any s > 0 there exists a constant
C (e) such that, for all u e X,

\\i{u)\\Y*ze\\u\\x + C(e)\\j oi(u)\\z. (3.2)

Proof : In the following proof, || u || y should be understood as || / (u ) || Y and

||w||z should be |U ° « («) | | z . Assume \\u\\x - 1 first. Let S =

{u EL Y\ Hz (u)\\Y =s e } . If u e S then theorem is true. Let Sc be the comple-

ment of S. If ueSc, we have e < ||w||y and the closure of Sc in

Y is compact. Consider the function u -> \\u\\z for u e Sc. It attains a

minimum on Sc and if this were 0 there would be a v G Y with
e ^ \\V\\Y

 s u c n t n a t 7 O ) = 0. This contradicts the assumption that7 is linear
and 1 — 1. Hence the mapping v -• \\v |jy/ ||u \\z is a continuous function on

M2 AN Modélisation mathématique et Analyse numérique
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Sc. It attains a maximum, say C (e). i.e. ||w||y =s C (s)\\u\\z. So for any

u with II^H^ = 1 we have ||M||y ^ s + C (C) | |M | | 2 .

Now for any u e X, we have

which implies (3.2). D
We shall also repeatedly use certain properties of the Newtonian potential

energy functional SI : LP(BR) -+ Û defined by

ïxdy, (3.3)

LEMMA 3.2: When p > 6/5, r/ze functional St defined by (3.3) w
continuous, non-negative and convex. £(f) = 0 iff ƒ = 0.

Proof : Define

I^ ( ) (3-4)
where * dénotes convolution. From Young's inequality for convolution
Q(f)zL™{BR) if p> 3/2 and Q(f)eLHBR) for 1 =s q <: 3 pi (3 - 2p)
when p ^ 3/2. This holds as \x\~i is in Lr(BR) for 1 =s r <: 3.

Now £(f)= fQ(f)dx where £>(ƒ) is defined by (3.4). Applying

Hölder's inequality to this we see that when p >- 6/5 there is a constant
C(R, p) such that

M(f)*CQt9p)\\f\\2
p.

This shows that SI is continuous when p > 6/5 as it is a bounded quadratic
form on LP(BR).

Now Q(f)(x) is the solution of

- Au = Air f (3.5)

on IR3 which decays to zero as |;c| -> oo. Thus

fQ(f)dx = - (4 71-)-

when ƒ has support in ^ /?. Thus

4

vol. 28, n° 5, 1994



582 G AUCHMUTY, WENYAO JIA

so ü is non-negative Smce j2 is quadratic m ƒ this implies â is convex on

= 0 if and only if Vu == 0 on U3 and thus u is constant on
K3. From (3.5), this can only happen when ƒ = 0. D

4. THE HARTREE EIGENPROBLEM FOR HELIUM

In the next two sections we shall prove vanous results that enable us to
develop convergent numerical algonthms for analyzmg the problem of the
Hartree eigenproblem for the Helium atom. Thus our interest is m analyzing
the problem of minimizing € given by (2.12)-(2.14) on if defined by (2 15)
and to find the minimal value S0.

The first term m (2.13) is the Dinchlet intégral of u and it is a norm on
HQ(BR). This détermines our choice of the function space for this problem.
We shall first prove some results about the other two terms m ê. Defme
Iu ï2 on HQ(BR) by

= iv(x)u(x)2dx (4 1)

(4-2)

Here F is a given Lebesgue measurable real-valued fonction on BR and we
shall often require either

(V1 ) . V is m Lq(BR) for some q > 3/2, and/or
(V2): V(x)^0 a.e. on BR

When either (VI) or (V2) holds, then Ix(u) will be well-defmed but
possibly infinité In the case of a Helium atom when V is defined by (2.12)
both (V1 ) and (V2 ) hold as V is in Lq (BR ) for q •< 3. Simüarly for the gênerai
potential V defmed by (2.2) both (VI ) and (V2) hold provided all the nuclei
are positively charged.

LEMMA 4.1 • When V obeys (VI), then Ix defined by (4.1) is bounded and
weakly continuons on H\(BR)

Proof When u is m H\(BR% then u is m LP(BR) for 1 ̂ p =£ 6 from the
Sobolev embeddmg theorems Applymg Holder's inequality

| | q \ \ u \ \ t (4.3)

where r = 2 ql {q — 1 ). If q => 3/2, then r < 6, so lx will be bounded on
l

M2 AN Modélisation mathématique et Analyse numérique
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Let {un : n 3= 1} be a séquence which converges weakly to u in
HQ(BR). Then un converges strongly to u in LP(BR) for 1 ̂ p <: 6 and

W-ulWdx

where 4, g* are conjugate indices and r = 2 q*.
When q > 3/2, then q* < 3 or r < 6 so 7t (un) -• /! (M) as n -• 00

LEMMA 4.2 : Assume V obeys (V2), £/ierc ƒ ! defined by (4.1) is convex and
weakly lower semi-continuous (wJ.s.c.) on HQ(BR).

Proof : When V obeys (V2 ) then / x (u ) is well defined and nonnegative for
each u in HQ(BR) ; it may be + oo. Let dom Ix = {u e Hl(BR) : I\{u) < oo},

= max (1, V(x)) on BR, and define / ! (« )= V^x) u2(x) dx ̂

/!(w) for u in HQ(BR). Since IZ^I <: oo, M is in dom/! implies M is in
dom/j and by Schwarz's inequality

Vxuwdx\ ^ Vxu
2dx

for ail u, w in dom/j.
Thus u, w e dom / j implies (1 - t)u + tw is in dom ^ for 0 ̂ t ^ l and

thus dom/2 is convex, as dom Ix — dom J1.
Given u, w in dom/^ consider ç?(f) = Ix{u + rw) - I\{u). This has

|?'(0)| = f V(x)u{x)w{x)dx ^ [ \Vl(x)\\u(x)\\w(x)\dx. Sothisis

finite and <p (t) - ^P(O) - t<p'(O) = ?2 /j(w) s* 0. So <p is convex. Thus
/j is convex on HQ(BR).

To show that Ix is weakly l.s.c. on Hl
0(BR), we first show that

Ec = {us Hl
0(BR): 7 1 ( M ) ^ C } is closed in ƒ/£(£*) for all c. Let {wn : n ^ 1}

be a séquence in £c with un-+v in HQ(BR). Then there is a subsequence
{wrt} which converges a.e. to v on BR, From Fatou's lemma, as
V obeys (V2),

ƒ ! (t? ) « lim inf / ! (wn ) =̂  c .

Hence f is in £c and Ec is closed. But Ec is convex, so it is weakly closed and
thus I\ is weakly l.s.c. on HQ(BR). •

vol. 28, o° 5, 1994



584 G AUCHMUTY, WENYAO JIA

LEMMA 4.3 : The functional 72 defined by (4.2) is non-negative, bounded,
convex and weakly continuons on H\(BR).

Proof Note that 72 - St (u2) where St is defined by (3.3). Thus Lemma 3.3
and the Sobolev embedding theorem implies that 72 is bounded and non-
negative.

If {un : n ^ 1} is a séquence in HQ(BR) which converges weakly to
«, then u\ converges strongly to u2 m Lr(BR) for l ^ r < 3 . Hence from
Lemma 3.2, 72(w) = St(u2) = lim St(u\) so 72 is weakly contmuous.

n -* oo

When «, w are in HQ(BR), define <p (t) = I2(u + £w) Then <p is a quartic

polynomial and

^'(0) = 4 Jj " ' ^ + 8 j j MW ^ ^ " ^ W ° ' ) dxdy .

The first term here is non-negative as the integrand is non-negative, while the
second term is non-negative upon taking ƒ = uw and using Lemma 3.2.
Smce M, w are arbitrary in HQ(BR) this shows that I2 is convex. •

A functional ƒ on a Banach space X is said to be coercive if

hm 4 ^ = oo .
I U I I - , 0 0 \\X\\

We are now in a position to show that S is coercive on HQ(BR) and this will
enable the proof of existence resuits.

LEMMA 4.4 : Assume V obeys (VI), then ë is coercive on HQ(BR).

Proof To prove this we need a lower bound on 72(w) and a upper bound
on Ii(u), First observe the elementary inequality, Q(u2) (x) ^ —— ||w||2, so

2 R

J u2Q(u2)^~ \\u\\\

When V is in Lq(BR) for some q > 3/2, then (4.3) holds with
r = 2q/{q-l)>2. Take X = Hl

Q(BR), Y = V(BR) and Z = L2(BR) m
Theorem 3.1. Then for each e > 0, there is a C(e)>-0 such that

or | | M | | ^ 2 Ê
2 | | V M | | +2C(ef \\u\\2 .

Using these resuits and (4.3) in (2.13), we see that

M2 AN Modélisation mathématique et Analyse numérique
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Choose s2 = ^-p^ip , then

where C b C2, C3 are constants This nght hand side is coercive on
HQ(BR) SO S also is •

THEOREM 4 1 When V obeys (VI) there is a û in if which minimizes
ë on if and S (û) is finite

Proof From Lemma 3 1, if is weakly closed in the reflexive Banach
space H\(BR) ë is weakly I s c on H\(BR) since Il7 I2 are weakly
continuous and the first term m ë is a norm on H\(BR) It is coercive on
HQ(BR) and thus on Sf from Lemma 4 4 Hence by corollary 38 14 of [23],
ë attains lts ïnfimum on if and ë (ü) is finite •

Now we shall show that the mimmizers of ë on Sf are non-tnvial solutions
of the usual Hartree eigenvalue problem

- - A u(x) — V (x) u(x) + u(x) U ^ y = Au(x) in BR (4 5)
^ J !•*• ~~ y l

with u m Hl
0(BR) and

r
u2dx=\ (4 6)

LEMMA 4 5 Assume V obeys (VI), then ë is Gâteaux differentiable at
each u in HQ(BR) and the G-derivative of § at u is

S'(u) = - Au - 2 Vu + 2 uQ (u2) (4 7)

Proof Let <p(t) = ê (u + th\ where u, fc are m Hl
0(BR) The Gâteaux

denvative of ë at w is the element i? of H~1(BR) such that <p'(0) =
(v, h) for all ft in HQ(BR) Here <,) is the usual painng of HQ(BR) and lts
dual space H 1(BR) through L2(BR)

Now <P\(t) = I ! (M + f ft ) has

<p{(0) = 2

and provided V obeys (VI ), then Vu e Lp(BR)forp >- 6/5 or Vw e ƒƒ"
Simüarly

<^2(0) = 4 \ u(x)h(x)Q (u2)dx

vol 28, n' 5, 1994



586 G AUCHMUTY WENYAO HA

upon using the symmetry of Q and Fubini's theorem When u is in
Hl

0(BR\ Q{u2) is in If°(BR) (as in proof of Lemma 3 2) and thus
uQ(u2) will be in L6(BR)

The proof that the Dinchlet intégral is G-differentiable on HQ(BR) and the
denvative is — 2 Au is standard, s o (4 7) follows •

THEOREM 4 2 When V obeys (VI) and ü minimizes S on y , then
ù is a (weak) solution of (4 5)-(4 6) and

* ( M ) + | / 2 ( W ) = A (4 8)

Proof The problem (Jjfe) of minimizing S on «9̂  is a constrained
minimization problem where the constraint is (4 6) The Lagrange multiplier
principle applies as in propositions 43 19 and 43 21 of [23], so the minimizer
ü obeys

êf(u) = 2\u (4 9)

for some real A Substituting (4 7) here we obtain (4 5)
Multiply (4 5) by «, integrate and use the divergence theorem, then

ü obeys

as (4 6) holds This and the définition (2 13) of S imphes (4 8) G
In gênerai a tunction w in y is said to be a cntical point of

ê on $f provided it is a solution of (4 9) for some A These will define the
eigenstates of the Hartree problem for Helium

In this proof (4 9) is an equality of éléments of H~l(BR) Smce
ü is in H\(BR\ (4 5) imphes that

-Au - (V + \)u-uQ(u2)

and this nght hand side is at least in L6i5(BR) when V obeys (VI) Hence
ü is actually in W2 6/5(BR) Under more regulanty conditions on Vy we can
obtain better regularity of the solution of (4 5)-(4 6)

THEOREM 4 3 Assume V is given by (2 12) and ü is a solution in
HQ(BR) of (4 5)-(4 6) Then ü is in W2r(BR) for U r < 3 , it is in
Ca(BR)for 0 < a < 1 and it is in W1 p(BR)for all 1 ^p < oo

Proof When V is defmed by (2 12), V is m Lf(BR) for 1 *=/? < 3 When
w is in Z/Q (/?£ ), from the Sobolev theorem it is in L6 (BR ) and thus
Vu is in Lr(BR) for 1 ^ r <: 2

M2 AN Modélisation mathématique et Analyse numérique
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From équation (4.5), ù obeys an équation of the from

-Au=f (4.10)

with ƒ in U for 1 ̂  r < 2, so u is in W% r(BR) for 1 ̂  r < 2.
This implies w is in L00 (5^) from Sobolev and thus ƒ in (4.10) is actually in

U for 1 ̂  r < 3. So ù is in W2' r ( ^ ) for 1 =s r -< 3. Applying the Sobolev
theorem to this, the last two parts of this theorem follow. •

5. MODIFIED VARIATIONAL PREVCIPLE FOR HELIUM

The variational principle (Jfe) has the standard Rayleigh form for
eigenvalue problems. It involves minimizing a non-convex functional on a
non-convex set and consequently there are considérable difficulties in
proving that algorithms for minimizing S on Sf converge. Hère we shall
introducé and analyze some modified variational principles for which it is
easier to describe the convergence of itérative algorithms.

First we shall look at the Schroedinger eigenproblem associated with the
linear part of (4.5). Assume V obeys (VI ) and define Jt?v : H^(BR)^ R by

x. (5.1)

Consider the problem (@v) of minimizing 34?v on S? and finding

= inf 3tfv(u) (5.2)

Àj(V) is the ground-state energy associated with the potential V.

THEOREM 5.1 : Assume (VI) holds and 3tfv, A x are defined by (5. l)-(5.2),
then A x (V ) is finite.

Proof : 36\ only involves the first two terms of ê, so we can repeat the
estimâtes in the proof of Lemma 4.4 to obtain an analog of (4.4). Namely

Jtrv(u)^ (1-2 s2 WVW^WVuf-C

Choose s sufficiently small, then this implies

as \\u\\ = 1 on £f. Hence Kx is finite.
For the particular case of the Coulomb field with
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a classical analysis, shows that À t 2= — z2/4 (compare [12], § 36), so for the
Helium atom A 2 s= — 1

Our modified vanational principle (^J^e ) for findmg the ground state of
the Helium atom will be based on minimizing the functional ^ v

l R defined by

Pr, = * (« ) - f II" f (53)

on the bail

m = M e Hl
0(BR) l u 2 dx === 1 1 (5 4)

l *l J

We shall show that, when rj is sufficiently large, the minimizers of
^ v on M will also mimmize S on Sf This problem has the advantage that
the domain ^ is a closed convex set in HQ(BR)

THEOREM 5 2 Assume (VI) holds, then there is a ûv in M which

minimizes ^ v on M It obeys

S'(u) - vu = M-u (5 5)

for some real JJL If || üv || < 1 then JUL = 0 while if /x ^ 0, then || M̂  || = 1

Proof The embeddmg of HQ(BR} into L2(BR) is compact from Relhch's
theorem so the functional ||w||2 is weakly continuous on HQ(BR) Since
S is w 1 s c and coercive on 0ty so also is ^ ^ ^ is a closed, convex set in
HQ(BR) SO it is weakly closed and thus SFv attams lts mfimum on

m

SF^ is G-differentiable on HQ(BR) with

since <f is Thus the mimmizer üv of ^ v on ^ obeys

for all /z in HQ(BR) such that ŵ  + th is m ^ for all sufficiently small positive

t
If Uw,,! -< 1, this ïmphes ^^(u) = 0 or (5 5) holds with /x = 0
If IJŵ H = 1, then h must obey (ü^, h) ^ 0 and then there is a

;Lt ^ 0 such that ùv obeys (5 5) In particular if uv obeys (5 5) with
V*09 then | |û, | | = 1 D

Suppose ü^ is defmed as in Theorem 5 2 Multiplying (5 5) by uv and
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mtegrating over BR leads to

#(« 7 7 ) + I / 2 ( w r ï ) = ( M + v ) l ^ l l 2 (5 6)

From the définition of ü and gQ we have

When kx = A X(V) is defined by (5 2), then

<f («„)=* Ax \\ùv\\
2 + - / 2 ( i i )

z

so 2 <^(w„)s= (AT + M + ??) l |wj | 2 (5 7)

upon adding (5 6) to this înequahty Combine with (5 7) then

(A t + ju. ) U^ ||2 ^ 2 <f 0 - 77 (5 8)

Define

f2<f0 if A l ( V ) * 0
c [2<f 0 - À! if A !(*/)<()

then (5 8) implies that

M | l"TJ II ^ 2 <f 0 - 77 - A 1 IJü^ II ^ - (77 - 7]c)

When 77 > 77 c then /x <: 0 and so || ùv ||2 = 1 from Theorem 5 2

THEOREM 5 3 Assume (VI) holds, v< is defined by (5 9) and
77 ;> 77 c ƒƒ M̂  minimize (Fv on M, then uv = u minimizes S on Sf and is a
solution of (Jtfe)

Proof We have shown above that when 77 :> 77 c we must have
11^ II = 1 Hence ù^ must minimize ê on Sf, since ît minimizes
^^ = g(u)- 77/2 on Sf Thus the resuit follows G

6 SEPARATELY CONVEX VARIATIONAL PRINCIPLE

In this section, methods from non-convex duality theory as descnbed in
Auchmuty [2] and [3], will be used to develop yet another class of variational
pnnciples whose solutions yield eigenfunctions of the Hartree eigenproblem
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The variational prmciple to be described here involves a functional defmed
on a product of two convex sets which is convex and lower semi-continuous
in each variable separately

The théories in [2] and [3] described duahty théories for variational
pnnciples which ïnvolve the minimization of the différence of two convex
functionals The functional & v defined by (5 3) may be wntten as

^ ( t t ) = /1( t t )- /2(«, V) (6 1)

where 2fl(u) = | Vw |2 dx + I2(u) (6 2)

and f2(u,v)= [ (V(x)+V)u2(x)dx (6 3)

The properties of the Dirichlet intégral and Lemma 4 3 ïmply that
fx is convex and weakly 1 s c on HQ(BR) When rj > 0 and V obeys (V2),
then Lemma 4 2 shows that / 2 ( - , V ) is also convex and weakly 1 s c on
HQ(BR) so (6 1) IS a décomposition of &v into the différence of two convex
functionals

For certain technical reasons, it is more convement to regard f2(., V ) as
being defined on L6(BR) In this case it has the followmg properties

LEMMA 6 1 Assume V obeys (VI) and (V2) and f2 L6(BR) x (0, oo ) ->
[0, oo ] is defined by (6 3) Then f2( . , v ) is (weakly) l s c and convex and
us convex conjugale functional f 2* ( - , v ) L65(BR) x (0, oo ) -• [0, oo ] is
given by

Tvk)dx (64)

ƒ2* is nonnegative, convex and l s c on L6/5(BR)

Proof The proof that /2( . , rj ) is (weakly) I s c and convex on
L6(BR) is essentially the same as the proof of Lemma 4 3

The conjugate convex functional f*(w, r\ ) is defmed by

J
f*(w, v)= sup I [uw- (V(JC)+ v)uz]dx

uzL2

dx

upon using proposition 2 2, chapter IX of Ekeland & Temam [5] Smce
ƒ2 ( - > *7 ) 1S m e supremum of a family of convex and 1 s c functionals on
L6/5(BR\ it is again convex and I s c
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Consider the functional &:Hl
0(BR)x L6I5(BR) x (0, oo ) — K defined by

^ (u, w ; v ) = ƒ !(!*) + /2*(w, 77 ) - J uw (6.5)

and consider the problem (Mv ) of minimizing j£f (., . ; 77 ) on M x L6/5(BR)
and finding

a (77 ) = inf inf JS? (M, W ; 77 ) . (6.7)
« e ^ WEL 6 / 5 (5*)

LEMMA 6.2 : Assume V obeys (VI) and (V2) and 77 > 0. Then
(i) for each w in L2(BR), ££ ( . , w ; 77 ) zs coercive, strictly convex and
weakly lower semi-continuous on 3%,
(ii) for each u in $, ££ (u, . ; 77 ) is convex and l.s.c. on L6/5 (BR) and there is
a unique w(u, 77 ) in L6/5 (BR ) which minimizes ££ (M, . ; 77 ) on L6f5 (BR ).

J % ( w ) = inf JSf (M, W; 77). (6.8)
W G L 6 / 5 ( ^ )

r
Proof : (i) When u is in M, u is in L6(BR) so MWJX is a continuous linear

»/
functional on HQ(BR) for each w in L6I5(BR). Using Lemma 4.3,
$£ ( . , w ; 77 ) is seen to be the sum of two weakly continuous, convex
functionals and a term which is strictly convex, weakly l.s.c. and coercive.
Thus (i) follows.

M o r e o v e r uw ̂  I I w II 6/5 IIu II 6 ̂  ̂  I I w II 6/5 II VM II s o ^ ( • > w ; 7̂ ) i s
I J

coercive on HQ(BR) and on ^ .

(ii) For each u is in HQ(BR\ uwdx is a continuous linear functional on

L6I5(BR\ so together with Lemma 6.1, ££ (u, . , 77 ) is convex and l.s.c. on

L6/5(BR).
Considered as a function of w, the integrand in (6.6) is minimized

pointwise if

w(x) = 2(V(x) + 77) u(x) a.e. o n ^ . (6.9)

When u is in $ and V obeys (VI), then this right hand side is in
L6/5(BR) from Hölder's inequality. Hence this minimum is attained. It is
unique as this functional is strictly convex in w.
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Substituting (6 9) in (6 6), we find that (6 8) holds D
This result implies that minimizing <£ ( . , . , rj ) on SS x Lbl5{BR) is

equivalent to minimizing ïFn on ^ , or the problem (Mv) is equivalent to

It is worth noting that when w is fixed m L6f5(BR), the problem of
minimizing JSf ( . , w , -q ) for u in ^ has a unique solution w(w, T? ) and
ü is a solution of

f "-~Au-hu(x) f " ^ rfy = ^ + A u m 5* (6 10)

which also obeys (4 6) The proof is just as Theorem 4 2 Thus if
(w, vi>) is a local minimizer of j£?( . , . , 17 ) on HQ(BR) X L2(BR), then
M, w are solutions of (6 9) and (6 10), so ü obeys

f TT*
subject to (4 6), that is, ü will be a solution of the Hartree eigenproblem for
Helium

Note also that a (77 ) is finite and there exists a global minimizer
(uv, wv, v) on & x L6I5(BR) as there is a minimizer of £FV on 0$ from
Theorem 5 2 When 17 >- 17 c, Theorem 5 3 shows that ŵ  will also mimmize
the Hartree functiormi on Sf

1 ITERATIVE METHOD FOR THE HELIUM EIGENPROBLEM

The vanational prmciple (Êv) for finding solutions of the Hartree
eigenproblem involves the mimmization of a functional which is separately
stnctly convex in each of w, w and defined on the product of two convex sets

A straight forward way to generate a descent séquence for ££ ( . , . , 77 ) is
to mimmize ££ in each variable separately Then each step involves solving a
strictly convex problem which has a unique solution Since we have the
explicit formula (6 9) for minimizing with respect to w, this procedure can be
descnbed as follows

ALGORITHM 7 1 1 Choose rj » 0, w(0) m M and define

w(0)== 2 ( V ( J C ) + 77)M(0> (7 1)

2 For k~ï\, find u(k) in ^ such that

( t ) ( * 1 ) w ( * - 1 } , v) ( 7 2 )
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3 Define

w(k) = 2(V(JK)+ v)u{k) (7 3)

r(O = _ AuW + UMQ(U*?) - Iw(*> (7 4)

4 Evaluate

Pk= | | r<*)_ <r<*>, !«<*>> M<*>|| (7 5)

5 If p* =s e stop , ^/se pw/ k - k + 1 <2«<i go to 2

It is worthwhüe to point out some features of this algonthm First note that
(7 3) ïmplies that

*\ w<*> ,v)= inf JSf (M(/:), W , v ) (7 6)

= &r
v(u

(k)) from(6 8)

The solution u{k) of (7 2) is a solution m ai of

- ^ W + MÖ(M2) = i w ( * " 1 } + A^w (7 7)

where A^ is a multiplier from (6 10) If w(fe) = wt/: ^, then w(/:) will in f act be
a solution of the Hartree eigenproblem Otherwise, by strict convexity in w
we have

= inf J ? ( M , wc^ 1 } , 7?)

Moreover strict convexity in u ïmplies that mequality holds on the last line
u n l e s s u(L) = u{k~X)

Thus J%(wU))< ^ ( M ^ - ^ u n l e s s M ^ - 1 5 - w^andw^ ' 1 5 = w^andin
this case we have a solution of the Hartree eigenproblem

To help analyze this theorem, define functionals h{ . HQ(BR)^> [0, oo ]
and h2 LP(BR) -• [0, oo ] for 6/5 ^p <= 2 by

too otherwise

and Ji2(w) = f*(w ,v) when w e LP(BR), 6/5 ^ p < 2

Both /*!, /z2 are convex, weakly 1 s c functionals on their domains Then
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(7.2) and (7.3) may be written as, given w{k~X), find u{k) e ^ obeying

w(k~l)e bh^u™), (7.8)

then find w(k) in LP{BR) obeying

u(k) e dh2(w
(k)). (7.9)

THEOREM 7.1 : Choose T? > 0, w(0) I/I Si and define V by (2.12). Let
F — {w^ : k ~z 0} &£ f/?e séquence generated by algorithm IA with
e = 0. r/zen either
(i) F is finite and the last term is a solution of the eigenproblem (6.11), or
(ii) F is an infinité, bounded séquence in $ which is a strict descent
séquence for IF v and has at least one weak limit point in $. Each weak limit
point is a strong limit point and is a solution of the eigenproblem (6.11).

Proof : (i) was proven above, so we shall consider the case where F is
infinité. The séquence {^v (wc/:)) : k s= 1} is strictly decreasing and bounded
below ; let

a(V)= inf f , ( « « ) . (7.10)
k» i

Since ^ v is coercive on SS, .Twill be bounded in ^ . Thus 7"has a weak limit
point M as ^ is a weakly closed, convex set in the reflexive Banach space

Let [u } :j s= 1} be a subsequence of F converging weakly to ü in

$, Then u J -> ü in LP(BR) for p < 6 from the Sobolev embedding theorem

and (7.3) implies that w{k}) ->win U(BR) for r < 2 as V is in U{BR) for

When Mj, M2 are in ffl, wx e dhl(ul\ w2 e dhx{u2), then

(wx — w 2 , Wi — w 2 ) ^ IV (wx — M 2 ) | dx
j

upon using the définition of hx. Apply Hölder's inequality and the Sobolev
embedding theorem here to find that for each r 2= 6/5 there is a C (r) such that

HU! -M2 | | l f 2 ^ C ( r ) - 1 | K - w 2 | | r . (7.11)

Since wikj) -• w in L r ( ^ ) for r <: 2, (7.8) and this imply that u(kj + 1)

converges strongly to a limit ü in M where ü obeys

W E a/ï^M). (7.12)
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By replacing w J with w J~l in the above argument we see that
u J converges strongly to M in ^ .

Since h2 is weakly l.s.c. and convex on Lr(BR), 6/5 =s= r < 2, dh2 has a
maximal monotone graph from Theorem 47.F in [23] and this graph is
weakly-strongly closed as in proposition 3, chapter 6, section 7 of [1]. Thus
taking limits in (7.9) we find that

ûebh2(w) (7.13)

and ^v(ù) = JS?(û, W ; 77) from (6.8)

=2= JSf (5, w ; 7?) from (7.12)

with inequality hère unless ü = ù.
If ü = û, then (7.12) and (7.13) imply that w is a solution of the Hartree

eigenproblem.
If ü ^ w, then ?Fv (ü) < <!Fv (ù). ^v is continuous on ^ and u J

converges strongly to û, so (7.10) implies that

Since « "̂„(5) = lim ^v(u
 J+ ) this is impossible so we must have

J - ° o

ü = ù and then û is a solution of the Hartree eigenproblem. •

8. ANALYSIS OF TV-ELECTRON HARTREE EIGENPROBLEM

We shall now extend the preceding analysis of the Hartree approximation
to a gênerai molecule involving A'-nuclei and Af-electrons. Mathematically
this problem is to extremize ê defined by (2.8) with (2.2) on the set
^N defined by (2.9).

For this analysis, our basic function space is

X will be a reflexive Banach space with the norm

11*111= I IIV<M2- (8.1)

The functional ê defined by (2.8) and (2.2), can be written as

(8.2)= £ [J [|i^,|2-Vk,|2] dx\
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where V is defined by (2.2) and I3 :X -> [0, oo] is defined by

« •

Henceforth all sums will be from 1 to N unless otherwise indicated. To show
the existence of minimizers of ê on £f N we shall show that ê is weakly l.s.c.
and coercive on X and 6^N is weakly closed in X.

LEMMA 8.1 : I3 is weakly continuous on X.

Proof : It suffices to show that for each i, j obeying l ^ i ^ j ^ N

JJ \x-y\

is weakly continuous as the sum of weakly continuous functionals is weakly
continuous. Take i = 1, j = 2 and assume {<£^: n =s 1} are séquences in
HQ(BR) which converge weakly to a limit <frh k = 1, 2. Then

iï \x-y\ ~l

Consider

<f>ïl)(yf-<f>2(y?\f
J

_ f k2("'
\*-y\

- 4>i(x)2]] dx dy .

dy

1/2

- y l

using Schwarz' inequality,

from Hardy's inequality (3.1).
Since <f>^n) converges weakly to <f>2 in HQ(BR\ then

bounded, so (8.5) becomes

(8.5)

V02|| is

ƒ - <f>2(y?\
\X-y\ ~^—,||-rz

for some constant M2. There is a similar inequality with <f> [n\ <f> x in place of
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2
(H), <p2 and then

When <̂ ^(n) converges weakly to <^ in HQ(BR), then it converges strongly to
<f>k in L2(BR) and the séquences are bounded in L2(BR) so this estimate shows
that Ü, and thus 73, is weakly continuous.

THEOREM 8.1 : There is a <P in Sf N which minimizes S on £fN and

<f0 = g(é) isfinite.

Proof : Lemma 3.1 shows that £fN is weakly closed in X, so it suffices to
show that S is weakly l.s.c. and coercive on £fN. The results of section 4 and
the preceding Lemma 8.1 shows that ê is weakly J.s.c. on X.

When â is defined by (8.4) we see that

n <t>j)^^R j ï <t>^2^j

Thus, just as in the proof of Lemma 4.4 and using the f act that V defined
by (2.2) is in L?(BR) for 1 ̂  q < 3, we have that S (<P ) ^ i || V<Z> ||2 - C for

some constant C and when 0 is in «S^. Thus S is coercive, so ê attains its
infimum on £f N and this infimum is finite.

To obtain the équation obeyed at the extrema of S on 5%, we will show
that ê is Gâteaux differentiable on X. lts derivative is the element
<f'(<2>) of X* obeying

lim ri[#(<P+t¥)-*(<P)]= <<f'(£>), ^>
f -* 00

for ail W in X. Hère <,) will be the standard pairing of X and
X* v/a the inner product on L2(BR ; UN).

LEMMA 8.2 : Assume V obeys (VI), then ê is Gâteaux differentiable at
each <P in X and

iy dx (8.6)

/ o r eac/z ^ m X
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Proof : The first two terms in (8.6) arise just as in Lemma 4.5 where we
use the fact that V is in Lq(BR) for 1 =s; q < 3.

Consider

= \ I I ^ > + '*•• ̂  + '*;> = I <V

where ^ is defined by (8.4). Now cr^(?) is a quartic polynomial in ? and one
sees that

< ( 0 ) = J ï [4>lQc)'f>l(x)4>j(y? + 4>lOc?4>j(y)'l'j<y)] \x-y\-'dxdy.

Thus

and this leads to (8.6). •
THEOREM 8.2 : When V is defined by (2.2) and <P minimizes S given by

(8.2) on 5fN, then <P - (<j>u ..., <j>N) obeys

dy-V(x) - A( <f>t onBR (8.7)

fxJ \*-y\
<f>t(x) = 0 on \x\ =R (8.8)

and 4>t(xfdx= 1 (8.9)

for l ^i ^N and for some real numbers (A1; ..., \N). Moreover

A, . (8.10)
1

Proof : Arguing just as in the proof of Theorem 4.2, the minimizer of ê on
£fN obeys

{ê'(é\ V) = £ Af

for all !P in X and some real numbers Al9 ..., \N.

Use (8.6), then 0 will be a weak solution of (8.7) and, since
ê is in £fN, (8.8) and (8.9) hold for each i.
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Multiply each équation of the form (8.7) by <f>t and sum, then

- * > •

£ [5 jTherefore £ [ 5 j | ̂  |2 dx - h(4>*)

Substituting from (8.2) we find (8.10).
This Theorem shows that the minimizer of S on S?N is actually a solution

of the usual Hartree eigenproblem (2.11) for an Af-electron System with the
potential V.

9. MODIFIED VARIATIONAL PRINCIPLES

In this section we shall describe and analyze a variational principle whose
domain is a closed convex set in X and which has the same minimizers as the
gênerai Hartree problem (Jfa) described in the previous section. Our work
here parallels the development of section 5 and section 6 for the Helium
atom.

Consider the problem (gPjjfa) of minimizing

_!£ ||*J2 (9.1)
J = i

on the unit product bail

@N = {<P eX: I I ^ J *£ 1 for 1 *zj *zN} (9.2)

where S is defined by (8.2) and 77 3= 0.

THEOREM 9.1 : Assume V is given by (2.2) and v s* 0. Then there is a
<PV = ((f>vU ..., <f>vN) in $N which minimizes 3Fv on 0SN. It satisfies

D(f}i£(<P)-v<f>j = Vj <f>j (9.3)

for some fx in UN and for 1 *zj ^N. If 0^11 < 1 then ix} = 0, and if

tij^O then \\$VJ\\ = 1.

Proof : This follows from the analysis of section 8 just as was done in
Theorem 5.2. •

The System of équations (9.3) says that each $VJ is an element of
é$N which is a weak solution of

- | A<t>, + (Wt(x)-V(x))4'j=(V+t*,) 4>j (9.4)
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on BR where

LEMMA 9.1 : Let <PV minimize 3F\ on $N> then there is a constant
C ! independent of r) such that

\vfx^Cx. (9.6)

Proof : From (8.2), since

= \ £ f [\V<f>J\
2^2V(x)<f>J(x)2]dx

j = i J

where each Jfv has the form (5.1) with V given by (2.2).
Now V e Lq(BR) for # < 3 so take # = 2

and using Theorem3.1, for any e > 0, there is a C ( e ) > 0 such that
; e | |V^||2 + C ( e ) \\<t>\\2^ e ||V<A ||2 + C(e ) when | | ^ | | 2 « 1 . Thus

(9.7)

£ f |V<^ ; |
2 -

Now !F V(<P v) *s ë § — - N — inf

Therefore

• - f c v - | * , | | 2 ) if

Using (9.7) here we see that provided e is chosen so small that
£| |V| |2<:1, then (9.6) follows as the coefficient of v is always non-
positive. D

It is worth noting that the value of Cx dépends essentially only on the
potential V and the radius R of the domain.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ÏTFRATIVE MFTHODS FOR THE HARTREE EIGENPROBLEM 601

COROLLARY 9.1 : Assume V is given by (2,2) and (Wu ..., WN) are
defined by (9.5) with <PV = (<f>l9 ..., <f>N). Then there is a constant
C2 independent of rj such that

0^WJ(x)^C2 on BR. (9.8)

Proof: We have W}(x) = Q{f](x)) where Q is defined by (3.4) and

ƒ,(*) = X $Vj(x)2- Thus | | / J | |1 ^N - 1 since <£„ is in &N and

so fj is in WQ'3 / 2(BR) as each 4>n] is in H\(BR) and using the Hölder's and
Sobolev inequalities. From (9.6), there is a constant Kl independent of
r) such that

\\fJ\\U3l2^Kl f o r l*j*N.

The Sobolev embedding theorem implies that each ƒ, is in LP{BR) for
1 ==£/? =£ 3 and | | / ; || ^ /T2 with K2 independent of 17.

Young's inequality for convolutions now yields that

I-M\\W.\\ ^ || U I M I , I I / J I .
II J II 0 0 " I I H / ? ' I M J l i p

This will be finite as when p > 3/2, then 3/2 < p ' < 3 and both these factors
will be finite. This implies (9.8) with C2 independent of 17. D

THEOREM 9.2 : Assume V is given by (2.2), A^V) is defined by (5.2),
C2 is a constant such that (9.8) holds and let r)c = C2 + 2 AX(V). If
17 > 17 c <2«<i <̂ ^ minimizes ^ v on &N, then <PV minimizes ê on

Proof : Suppose <PV minimizes ïF^ on $N and choosey in {1, 2, ..., N} .

Fix (/>^ for k^j, then 0 ^ must minimize lFv as a function of

<t>j alone on ^ defined by (5.4). That is <f>VJ minimizes

= J [ | (9.9)

on ^ . Here W7 is given by (9.5) with <f> vk in place of <j>k. This is a quadratic
functional in <f>. Define

= inf ^ J ( ^ ) s s A 1 ( V r ) + C2/2 (9.10)

where A t(V) is given by (5.2) and W} obeys (9.8).
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When A ly(V) - y <: 0, the infimum of (9.9) occurs at a function

^ o b e y i n g | | ^ ^ | | = 1. Inparticularif T? >2A 1 (V) + C2, then fl^H = 1
for 1 =sy =s=7V from (9.10). The theorem now foliows as this &v is in
5V D

To dérive convergent algorithms for {^J^a) we would like to express
êFv defined by (9.1) as the différence of two convex functionals. This leads
to the question of the convexity of 13. With some simple algebra, one sees
that

where

p(x)= £ \<f>,(x)\2. (9.12)
i = 1

Each term of the sum in (9.11) has the form I2(<f>i) with I2 defined by (4.2),
and Lemma 4.3 says that each of these is convex. Define I4 : X -> IR by

f^dxdy (9.13)

where p and <& are related by (9.12).

LEMMA 9.2 : The functional I4 defined by (9.12)-(9.13) is non-negative,
bounded, convex and weakly continuons on X.

Proof : The proofs of non-negativity, boundedness and weak continuity
are straight-forward modifications of Lemma 4.3.

When <P, V are in X, let g(t) = IA{<P + f^) . Then g is a quartic
polynomial in t and one finds that

= 2 ff I JC -

dxdy

using the usual Euclidean norms and inner products on UN. Each term on this
right hand side is non-negative as in the proof of Lemma 4.3 so
ƒ4 is convex by corollary 42.8 in [23]. D

This analysis shows that /3 is a non-negative, bounded and weakly
continuous functional on X which can be written as the différence of two
convex functionals
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10. SEPARATELY CONVEX FORMULATION

In the last section, we described a variational principle (gPâtfa ) for the N-
electron Hartree problem based on minimizing JFV on the product bail
08 N instead of on the sphère £fN of the usual Hartree formulation. Moreover
it was shown that ^ v could be written as a différence of two convex
functionals. Thus the gênerai techniques of [3] could be applied to this
problem. This would involve solving for 0, p and certain dual vector-valued
functions at each step.

There are a number of reasons why it is advantageous to find minima by
only doing descent in one component cj>J dit a time. These include the fact that
each such computation is smaller and more manageable as they typically
involve solving one elliptic problem at each step instead of a System of
N elliptic problems. Hère we shall describe a variational formulation of the
Hartree problem which involves minimizing a functional on a convex set
with the functional convex in each variable separately.

Define ^ : I x F x ( 0 , o o ) - . R b y

where Y = L6/5(BR ; RN) and W, (JC) is defined by (9.5) and is independent of

The problem {^J^a ) is to minimize J§? ( . , . ; 77 ) on 0$N x Y and to
evaluate

a(V)= inf inf i ? ( # , !P; 17). (10.2)
<P e mN V e Y

THEOREM 10.1 : Assume V obeys (VI) and (V2), 77 > 0 and & is defined
by (10.1). As a function of <f>$, with <f>J9 j # i, y/, 77 fixed, ££ is coercive,
strictly convex and weakly l.s.c. on M. For each <P in 08N, 17,
tffr 7 # f fixed then j£? is convex and l.s.c. for tftç in L6!5(BR). Moreover

V = inf J2?(# , ! P ; T 7 ) . (10.3)
^ e Y

Proof : This resuit follows just as the proof of Lemma 6.2. jSf is minimized
in <//?, keeping other variables fixed, when

^ = (2V + T7)* f (10.4)

upon using the extremality conditions for (10.1), 1 ̂ £ **N. Thus

inf JSf(4>, ! P ; i ? ) = f f [ i | V 0 , |2 + W, </>ƒ - (V + 77/2) <f> ?1 dx
VeY J = i J L ^ J
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(8.3) and (8.5) leads to

YJ<f>fWJ (10.5)

so (10.3) follows from the définition of &v and S\ D

COROLLARY 10.1 : 0 v minimizes <Fv on MN iff there is a &v in

L6/5(BR ; UN) = Y such that (#„, &v) minimizes &{. , . ; v ) on @N x Y.

Then

(i) ^ = (2V + 7 / ) ^ for 1 ^ l ^ N, and

(ii) a (V)= inf J % ( # ) .
*e!8N

Proof : (ii) follows by taking the infimum of (10.3) over &SN. If
<PV minimizes !Fv on &N ; &v be given by (i), then ^ is in
Y and it obeys the extremality condition for JSf (^^^ . ; r\ ) on 7. Since
JSf is convex in !P, any extremum is a minimizer so (cP^, 1̂ )̂ minimizes

JS?(., . ; 17) on ^ x 7.
It is worth noting that ( J f a ) and {^J^a ) may have critical points which

are not minimizers of ê on Sf and / ^ on 0HN respectively. These critical
points will be solutions of the Hartree équations (8.7)-(8.9) which are not the
ground-state of the system. Further analysis of (10.1) shows thai, provided
77 is large enough, there will be corresponding critical points of (10.1) which
are not global minimizers and whose 0 components are solutions of the
Hartree équations.

11. DESCENT ALGORITHMS FOR THE HARTREE EIGEN-PROBLEM

In the Preceding section, we showed that the variational principle
(^J^a ) of minimizing JS? ( . , . ; 77 ) on â&N x Y is equivalent to the usual
Hartree problem for an 7V-electron atom or molecule. This principle has the
advantage that it can be treated as a séquence of well-posed, strictly convex
problems each of which has a unique minimizer.

It leads to the following natural algorithm.

ALGORITHM 11.1 : Given e > 0, 77 > 0 and <P (0) in 5%. For k^O

1. Define

^ c * } (x )= (2 V + 77) 0ik\x). (11.1)
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2. Evaluate

for 1 «=y =s=iV.
3. Evaluate

df\x) = - ^ / *> + (2 Wjk)(x) - V}k\x)) <f>}k) (11.3)

r 1 =sy =s Af.
4. Compute

Pk=

5. If pk^ e stop, else continue.

6. For 1 ^ 7 =siV, /m^i ^*/fc+ 1J -̂S1 tàe minimizer of

f ^ T|) (11.4)

m 5S defined by (5.4).
7. / ^ tf><*+1>= (<P1

(fc+1), ..., <P^* + 1 ) ) , * + 1 in place of k and go to 1.

Hère step 1 uses the explicit expression (10.4) for minimizing
i f ( 0 (*>, . ; 7} ) as a function of !P.

In steps 2 and 3, W;
(/:) is the appropriate function corresponding to (9.5) and

then d{k) is the derivative of J§? ( . , ^ ( / : ) ; r\ ) with respect to 0 ; evaluated at
<P^k\ pk measures whether &{k) is an approximate eigensolution of the
problem. If so, we stop.

In step 6, we compute the next <P(kJhl)by minimizing j£f with respect to
<pu <p2, -.., <pN in each function <p} separately. Thus <pjk+ l) will be a solution
of the System of équations

- A4> + [2 W,<*>(JC) - fA/V)] 0 = M<^ in BR (11.5)

^ = 0 on \x\ =R (11.6)

and

>2dx^ 1 . (11-7)

Hère
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For rj === ri c and when we are close enough to a solution it is expected that
equality will hold in (11.7).

Just as in section 7, it can be shown that the séquence
|(^> (k\ #/•(*)) : k^O} generated by algorithm 11.1 from an arbitrary initial
choice <P (0) will be a descent séquence for <£ ( . , . ; r\ ) and

if and only if <P {k) is in @N and obeys (8.7)-(8.8).
We may summarize these results as follows.

THEOREM 11.1: Assume V is defined by (2.2), e = 0, v => 0
4> ( 0 ) zs z>z 8SN. IfF — { ̂  (/:) : A: ̂  0 } /s ró<? séquence generated by algorithm
11.1 ?/zen either :

(i) ƒ" ï5 fini te and the last 0 ^ is a solution of the Hartree eigenproblem
(8.7M8.8), or

(ii) F is an infinité bounded séquence in $N which is a strict descent
séquence for fFv and F has at least one weak limit point in &N. If
S is a strong limit point of F, then <P is a solution of (8.7)-(8.8).

Proof : This proof follows in a similar manner to that of Theorem 7.1.
Unfortunately unlike the proof of Theorem 7.1, we have not been able to
show that each weak limit point of F is a strong limit point of
F in this case. For this problem if ( . , W ; rj ) is non-convex on M so the
rnethods used in secüon 7 do not carry over to provide an estimate analogous
to (7.11). D

12. A CONVERGENT DESCENT ALGORITHM

In Auchmuty [3], some gênerai algorithm for minimizing the différence of
two convex functional and certain convergent results were proven. The
problem (SPffla ) described in section 9 has this form, so we shall describe
the corresponding algorithm based on [3]. As will be seen, this algorithm is
closely related to that of the previous section.

We shall now use notation corresponding to that of [3]. Take
X = Hl

0(BR ;RN\ Y = LA{BR ; R") and A : X -> Y be the standard embed-
ding. Then A is a linear, compact, 1-1 map. Compactness follows from the
Kondrachov-Rellich theorem, so assumption (A5) of [3] holds.

Define ƒx : -> [0, oo ] by

2 {( P ^ ( y ) (12.1){(
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where p is defined by (9.12) and

(0 if • « « ,
[oo otherwise .

Define ƒ 2 : y x (0, oo ) -> [0, oo ) by

>, */) = f (2V + v)\<P\2dx+ £ / 2 ( ^ ) (12.3)

where V is defined by (2.2) and I2 by (4.2).

Consider F : X -> R defined by

Ti). (12.4)

Hère the embedding ,4 is understood in the expression of f2. This has the
basic form of équation of [3] and from (8.2), (9.1) and (9.14),

l f * e * « (12.5)
oo otherwise

so {0*3%*a ) is the problem of minimizing this F on X.
It is straightforward to verify that fx obeys (Al) and (A2) of section 2 in

[3] and that (2.3) there holds with yx = 2, C1 = 1/2, ̂  = 0.
fii*'* v) obeys (Al), is convex, continuous and bounded on Y and there

are constants C2, <i2
 s u c n t n a t

O ^ / 2 ( < Ê ; 7 7 ) ^ C 2 | | 0 | | 2 + d2 (12.6)

for ail 0 in F. Thus assumptions (A3') and (A5) of [3] hold.
Since this problem satisfies the assumptions of the problems treated in [3],

we can look at the corresponding algorithm. Algorithm (jtfl ) of section 4 of
[3], when applied to this Af-electron Hartree problem can be written as
follows.

ALGORITHM 12.1 : Given s ^ 0, v => 0, # ( 0 ) in &*N. For k^0 and

1 ssy ^N :

1. Define

*ƒ*>(*) = |"2 y (x) + 7, + J l ^ ^ l rfyl *;*>(JC) . (12.7)

2. F M * ( * + 1) m ^

+ 1 ) ) . (12.8)
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3. Evaluate

. (k+ l ) / , , \

l * - y |

4. Evaluate

5. If ök^ e stop, else put k — k + 1 and go to 1.
This description of the algorithm differs from that of [3] in that we have

avoided the use of conjugate convex functionals and have given an explicit
form for the Lagrangian L. Instead we have used the duality property that

v e a/(w) iff MG 3/*(t>)

where ƒ : X —• (— oo, oo ] is convex and l.s.c. (Theorem 5LA in [23]). Thus
(12.6) is equivalent to step 3 in (sfl) and (12.7) is step 2 in (sfl).

If 0 (k+ J) is a solution of (12.8), then it minimizes

on X. That is # ( A + 1} is in ^ ^ and it satisfies

J ] < P J ( x ) = fLJ&J(x) in BR

<Pj (x) - 0 on dsBR

where

f ^ y and p (y) = J ^ ( j ) 2 . (12.11)

This is a non-linear integro-differential coupled eigenvalue System for
(01, ..., ^/v). Since ƒx k is strictly convex and coercive, there is a unique
minimizer of this System from standard results.

Step 3 and 4 of algorithm 12.1 check to see if 0(k+ l) is an approximate
eigenfunction of the system. If so, stop, otherwise continue. Theorem 4.1 of
[3] guarantees that the séquence { 0 a) : k 3= 0} generated by algorithm 12.1
will be a descent séquence for the associated Lagrangian, and hence for
F , and F (0 (/c+l)) = F {0 (k)) if and only if 0 (k) is a solution of (8.7)-(8.8).

THEOREM 12.1 : Assume V is defined by (2.2), 0{O) is in $N,
s = 0 and rj >- 0. Let F — {0^; k ^ 0} be the séquence generated by
algorithm 12.1. Then either

(i) ƒ" is finite and the last element 0 w is a solution of the Hartree
eigenproblem (8.7)-(8.8), or
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(n) F is an infinité, bounded séquence in £%N which is a strict descent
séquence for F andwhich has at least one weak hmit point in â$N. Each such
limit point is a solution of the eigenproblem (8.7)-(8.8).

Proof This proof follows in the same manner as Theorem 7.1 except now
all the fonctions are vector-valued, <P, W replace (M, W) and fx, f2 replace
hl9 h2. In particular the analog of (7.11) holds with r = 4/3 in this case. D
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