@article{M2AN_1994__28_5_499_0, author = {Pehlivanov, A. I. and Carey, G. F.}, title = {Error estimates for least-squares mixed finite elements}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {499--516}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {5}, year = {1994}, mrnumber = {1295584}, zbl = {0820.65065}, language = {en}, url = {http://www.numdam.org/item/M2AN_1994__28_5_499_0/} }
TY - JOUR AU - Pehlivanov, A. I. AU - Carey, G. F. TI - Error estimates for least-squares mixed finite elements JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 499 EP - 516 VL - 28 IS - 5 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1994__28_5_499_0/ LA - en ID - M2AN_1994__28_5_499_0 ER -
%0 Journal Article %A Pehlivanov, A. I. %A Carey, G. F. %T Error estimates for least-squares mixed finite elements %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 499-516 %V 28 %N 5 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1994__28_5_499_0/ %G en %F M2AN_1994__28_5_499_0
Pehlivanov, A. I.; Carey, G. F. Error estimates for least-squares mixed finite elements. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 5, pp. 499-516. http://www.numdam.org/item/M2AN_1994__28_5_499_0/
[1] On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, Sér. Anal. Numér., 8, no. R-2, 129-151. | EuDML | Numdam | MR | Zbl
, 1974,[2] Approximate Boundary-Flux Calculations, Comput. Methods Appl. Mech. Engrg., 50, 107-120. | MR | Zbl
, and , 1985,[3] Finite Elements : A Second Course, vol. II, Prentice-Hall, Englewood Cliffs, N. J. | MR | Zbl
and , 1983,[4] Convergence studies of least-squares finite elements for first order systems, Comm. Appl. Numer. Methods, 5, 427-434. | Zbl
and , 1989,[5] A least-squares finite element method for the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 83, 1-7. | MR | Zbl
, 1990,[6] On least-squares approximations to compressible flow problems, Numer. Methods Partial Differential Equations, 2, 207-228. | MR | Zbl
, 1986,[7] The Finite Element Method for Elliptic Problems, North Holland, Amsterdam | MR | Zbl
, 1978,[8] Interpolation theory over curved elements, with application to finite element methods, Comput. Methods Appl. Mech. Engrg., 1, 217-249. | MR | Zbl
and , 1972,[9] Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44, 39-52. | MR | Zbl
and , 1985,[10] On mixed finite element methods for first order elliptic systems, Numer. Math., 37, 29-48. | EuDML | MR | Zbl
, and , 1981,[11] Elliptic Problems in Nonsmooth Domains. Pitman. Boston. | MR | Zbl
, 1985,[12] On different finite element methods for approximating the gradient of the solution to the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 42, 131-148. | MR | Zbl
and , 1984,[13] On the validity of Friedrichs' inequalities, Math. Scand., 54, 17-26. | EuDML | MR | Zbl
and , 1984,[14] Zur asymptotischen Verteilung der Eigenwerte des Maxwellschen Randwertproblems, Dissertation, Bonn. | MR | Zbl
, 1978,[15] Error estimates for the finite element approximation to a Maxwell-type boundary value problem, Numer Functional Analysis and Optimization, 2, 267-285. | MR | Zbl
and , 1980,[16] On finite element approximation of the gradient for the solution of Poisson equation, Numer. Math., 37, 333-337. | EuDML | MR | Zbl
and , 1981,[17] Finite element approximation of electromagnetic fields in three dimensional space, Numer. Functional Analysis and Optimization, 2, 487-506. | MR | Zbl
and , 1980,[18] Least-squares mixed finite elements for second order elliptic problems, SIAM J. Numer. Anal., to appear. | MR | Zbl
, and , 1993,[19] Convergence analysis of least-squares mixed finite elements, Computing, 51, 111-123. | MR | Zbl
, , and , 1993,[20] A mixed finite element method for 2nd order elliptic problems, Lect Notes in Math., Springer-Verlag, v. 606, 292-315. | MR | Zbl
and , 1977,[21] On an inequality of Friedrichs, Math. Scand., 51, 310-322. | EuDML | MR | Zbl
, 1982,[22] Über die Approximation der Lösungen der Maxwellschen Randwertaufgabe mit der Methode der finiten Elemente, Applicable Analysis, 10, 15-30. | MR | Zbl
, 1980,