A. I. PEhLIVANOV
 G.F. CAREY
 Error estimates for least-squares mixed finite elements

M2AN - Modélisation mathématique et analyse numérique, tome 28, n ${ }^{\circ} 5$ (1994), p. 499-5 16
http://www.numdam.org/item?id=M2AN_1994__28_5_499_0
© AFCET, 1994, tous droits réservés.
L'accès aux archives de la revue «M2AN - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

ERROR ESTIMATES
 FOR LEAST-SQUARES MIXED FINITE ELEMENTS (*)

by A. I. Pehlivanov (${ }^{1}$), G. F. Carey (${ }^{1}$)
Communicated by R Glowinski

Abstract

Résumé - Une méthode éléments finis mixtes des moindres carrés est formulée, et applıquée \grave{a} une classe de problemes elliptıques du second ordre, pour des domaines bidimensionnels et tridimensionnels La solution primaire u et le flux σ sont approchés en utllsant des espaces éléments finis de polynomes par morceaux, de degrés k et r, respectivement La méthode est non conforme dans la mesure ou l'approximation du flux ne peut pas être satısfate sur toute la frontière Γ, mats n'est satusfate qu'aux nœuds de Γ Des estimations d'erreur optumales dans les espaces L^{2} et H^{1} sont obtenues en falsant l'hypothese habituelle de régularté sur la partttoon éléments finıs (la conditton LBB n'est pas requise) Les cas importants où $k=r$ et $k+1=r$ sont examınés

Abstract - A least-squares mixed finite element method is formulated and applied for a class of second or der elliptic problems in two and three dimensional domains The primary solution u and the flux σ are approximated using finite element spaces consisting of piecewise polynomials of degree k and r respectively The method is nonconforming in the sense that the boundary condition for the flux approximation cannot be satıstied exactly on the whole boundary Γ - so it is satisfied only at the nodes on Γ Optimal L^{2} - and H^{1}-error estimates are derived under the standard regularity assumption on the finite element partition (the LBB-condition is not required) The important cases of $k=r$ and $k+1=r$ are considered

1. INTRODUCTION

Least-squares mixed finite element methods have become a topic of increasing interest since they lead to symmetric algebraic systems and are not subject to the Ladyzhenskaya, Babuška, Brezzi (LBB) consistency requirement. The methods remain, however, relatively little studied compared with the established mixed methods. There are several open theoretical questions related to the formulation and convergence properties as well as numerical behaviour.

[^0]$\mathrm{M}^{2} \mathrm{AN}$ Modélısatıon mathématıque et Analyse numérıque ()764-583X/94/05/\$ 400 Mathematical Modelling and Numencal Analysis ©AFCET Gauthier-Villars

The main idea can be conveniently introduced by means of the representative second-order elliptic boundary-value problem:

$$
\begin{align*}
-\operatorname{div}(A \operatorname{grad} u) & =f \quad \text { in } \quad \Omega, \tag{1.1}\\
u & =0 \quad \text { on } \quad \Gamma, \tag{1.2}
\end{align*}
$$

where $\Omega \subset R^{n}, n=2,3$, is a bounded domain with boundary Γ and A is a positive definite matrix of coefficients. Introducing the flux $\boldsymbol{\sigma}=-A \operatorname{grad} u$, the problem may be recast as the first order system

$$
\begin{array}{rlrl}
\boldsymbol{\sigma}+A \operatorname{grad} u & =0 & & \text { in } \\
\operatorname{div} \boldsymbol{\sigma}+c u & =f & & \text { in } \\
u & =0 & & \text { on } \tag{1.5}\\
u & \Gamma .
\end{array}
$$

The classical mixed method for (1.3)-(1.5) is based on the stationary principle for a saddle-point problem and is subject to the inf-sup condition on the spaces for u and $\boldsymbol{\sigma}$ (see Brezzi [1]). This implies certain restrictions on the polynomial degree k and r for the element bases defining approximations u_{h} and $\boldsymbol{\sigma}_{h}$ respectively. In a least-squares mixed formulation the problem is to minimize the L^{2}-norm of the residuals corresponding to (1.3)-(1.4) and is not subject to the consistency requirement. The following estimates for the leastsquares mixed method are proved in [18]: for $k=r$

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{1, \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{H(\mathrm{~d} 1 v \Omega)} \leqslant C h^{h} \tag{1.6}
\end{equation*}
$$

and for $k+1=r$

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0, \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{H(\mathrm{dvv}, \Omega)} \leqslant C h^{\prime} \tag{1.7}
\end{equation*}
$$

These estimates are optimal in the corresponding norms but it is highly desirable to have a optimal estimate for $\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{0, \Omega}$. This is the aim of this paper. To accomplish this goal we use the fact that curl grad $v=0$ to introduce the equation

$$
\operatorname{curl}\left(A^{-1} \boldsymbol{\sigma}\right)=0
$$

which is added to the first order system. Also, a new boundary condition $\mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}=0$ is imposed on Γ, where \mathbf{n} is the outward normal to Γ and " \wedge ", denotes the exterior product. This boundary condition cannot be satisfied exactly by the finite element space - so we satisfy it only at the nodes on the boundary. In this sense the method is mildly nonconforming at the boundary. Note that the nonconformity has no negative impact on the stability of the method - the only boundary condition which is necessary for existence and uniqueness is (1.2). We prove the following estimates: for $k=r$

$$
\begin{align*}
& \left\|u-u_{h}\right\|_{1, \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{1, \Omega} \leqslant C h^{h}, \tag{1.8}\\
& \left\|u-u_{h}\right\|_{0, \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{0, \Omega} \leqslant C h^{k+1} \tag{1.9}
\end{align*}
$$

and for $k+1=r$

$$
\begin{align*}
\left\|u-u_{h}\right\|_{0 \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{1 \Omega} \leqslant C h^{r}, \tag{array}\\
\left\|u-u_{h}\right\|_{1 \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{0 \Omega} \leqslant C h^{r+1}, k>1 \tag{111}
\end{align*}
$$

Note that all above estımates are optımal and they depend only on the regularity of the solution and the standard regularity assumption on the finite element partition - there are no other restrictions on the finte element mesh or on the finite element spaces

Some comments conserning several related studies of least-squares methods are warranted to put the current work in perspective, e g see $[5,6$, 10, 12, 16] Fix, Gunzburger and Nicolaides [10] presented a mixed method based on the Kelvın prıncıple Optımal L^{2}-error estımates are proved for a certan class of grids satisfying the so-called Grid Decomposition Property Unfortunately, the latter is a necessary and sufficient condition for stability and optımal accuracy (see also Chen [6]) Chang [5] has proved an estımate simular to (19) when A is the identity matrix under the assumption that the boundary condition $\mathbf{n} \wedge \boldsymbol{\sigma}=0$ is satisfied exactly on Γ This condition is essential for the analysis in [5] But in the present paper we prove that it is not necessary to satisfy this boundary condition in order to have stability (see also [18]) We need it in order to get better estimates and it is sufficient to satisfy such condition approximately The main tool in [5] is the general theory of Agmon, Douglis and Nirenberg for elliptic systems which does not reveal entirely the different nature of u and $\boldsymbol{\sigma}$ It is not clear how to handle the case $k \neq r$ following such approach In the present study we manage to "separate" the consideration of error estımates for u and $\boldsymbol{\sigma}$ Our analysis is closely related to the analysis of finite element approximations for Maxwell equations (see Neittaanmakı and Saranen [17], Saranen [22], Neittaanmakı and Picard [15]) In fact, part of our bilnear form concides with the bilinear form in these studies The special cases corresponding to the Poisson equation and Helmholtz equation are also considered in Neittaanmaki and Saranen [16], Haslınger and Neittaanmakı [12] For such specific classes of equations it is possible to define a direct approximation to the flux with optımal estımates However, the same approach does not work for the class of problems considered here since these involve a coupled system for u and $\boldsymbol{\sigma}$

The paper is organized as follows in section 2 we give the problem formulation and prove the coercivity of the bilunear form The finite element formulation is described in section 3 Optimal error estimates are derived in section 4

2. PROBLEM FORMULATION

Let Ω be a bounded domain in $R^{n}, n=2,3$, with smooth boundary Γ. Consider the second-order boundary-value problem

$$
\begin{align*}
-\operatorname{div}(A \operatorname{grad} u)+c(x) u & =f \quad \text { in } \quad \Omega, \tag{2.1}\\
u & =0 \quad \text { on } \quad \Gamma, \tag{2.2}
\end{align*}
$$

where the matrix of coefficients $A=\left(a_{t j}(x)\right)_{t, j=1}^{n}, x \in \bar{\Omega}$, is positive definite and the coefficients $a_{i j}$ are bounded; i.e. there exist constants α_{1} and α_{2} such that

$$
\begin{equation*}
\alpha_{1} \zeta^{T} \zeta \leqslant \zeta^{T} A \zeta \leqslant \alpha_{2} \zeta^{T} \zeta \tag{2.3}
\end{equation*}
$$

for all vectors $\zeta \in R^{n}$ and all $x \in \bar{\Omega}$.
The standard notations for Sobolev spaces $H^{m}(\Omega)$ with norm $\|\cdot\|_{m, \Omega}$ and seminorms $|\cdot|_{t, \Omega}, \quad 0 \leqslant i \leqslant m$, are employed throughout. As usual, $L^{2}(\Omega)=H^{0}(\Omega)$ and let $H^{m}(\Omega)^{n}$ be the corresponding product space. Also, we shall use the spaces $H^{s}(\Gamma)$ (see Grisvard [11]). Let

$$
V=\left\{v \in H^{1}(\Omega): v=0 \text { on } \Gamma\right\}
$$

By the Poincaré-Friedrichs inequality

$$
\begin{equation*}
\|v\|_{0, \Omega} \leqslant C_{F}|v|_{1, \Omega} \text { for all } \quad v \in V . \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
c_{0}=\min \left\{\inf _{x \in \Omega} c(x), 0\right\} \tag{2.5}
\end{equation*}
$$

We make the following assumptions with respect to the coefficients of our equation : there exist constants α_{0} and c_{1} such that

$$
\begin{align*}
& |c(x)| \leqslant c_{1} \quad \text { for all } \quad x \in \bar{\Omega} \tag{2.6}\\
& 0<\alpha_{0} \leqslant \alpha_{1}+c_{0} C_{F}^{2} \tag{2.7}
\end{align*}
$$

where C_{F} is the constant from the Poincare-Friedrichs inequality above. Hence, the coefficient $c(x)$ may be negative provided that α_{1} is sufficiently large.

Now, introducing a new variable $\boldsymbol{\sigma}=-A \operatorname{grad} u, \boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, we get the following system of first-order differential equations for u and $\boldsymbol{\sigma}$:

$$
\begin{align*}
\boldsymbol{\sigma}+A \operatorname{grad} u & =0 & \text { in } & \Omega \tag{2.8}\\
\operatorname{div} \boldsymbol{\sigma}+c u & =f & \text { in } & \Omega \tag{2.9}\\
u & =0 & \text { on } & \Gamma . \tag{2.10}
\end{align*}
$$

Let $\boldsymbol{q}=\left(q_{1}, \quad, q_{n}\right)$ be a smooth vector function Denote by curl the following operator

$$
\begin{aligned}
& \Omega \subset R^{2} \quad \operatorname{curl} \mathbf{q}=\partial_{1} q_{2}-\partial_{2} q_{1}, \\
& \Omega \subset R^{3} \quad \operatorname{curl} \mathbf{q}=\left(\partial_{2} q_{3}-\partial_{3} q_{2}, \partial_{3} q_{1}-\partial_{1} q_{3}, \partial_{1} q_{2}-\partial_{2} q_{1}\right)
\end{aligned}
$$

Also, when $\Omega \subset R^{2}$ and $v \in H^{1}(\Omega)$ we denote $\operatorname{curl} v=\left(-\partial_{2} v, \partial_{1} v\right)$
Since curl grad $v=0$ for smooth v then (28) yields

$$
\begin{equation*}
\operatorname{curl} A^{-1} \boldsymbol{\sigma}=0 \tag{array}
\end{equation*}
$$

Let $\mathbf{n}=\left(\nu_{1} \quad, \nu_{n}\right)$ be the outwad normal to the boundary Γ We introduce the exterior product operator

$$
\begin{aligned}
& \Omega \subset R^{2} \quad \mathbf{n} \wedge \mathbf{q}=\nu_{1} q_{2}-\nu_{2} q_{1} \\
& \Omega \subset R^{3} \quad \mathbf{n} \wedge \mathbf{q}=\left(\nu_{2} q_{3}-\nu_{3} q_{2}, \nu_{3} q_{1}-\nu_{1} q_{3}, \nu_{1} q_{2}-\nu_{2} q_{1}\right)
\end{aligned}
$$

Then, having in mind the boundary condition (210), we get $\mathbf{n} \wedge \operatorname{grad} u=0$ which may be written as

$$
\begin{equation*}
\mathbf{n} \wedge A^{1} \boldsymbol{\sigma}=0 \quad \text { on } \quad \Gamma \tag{array}
\end{equation*}
$$

Next, introduce the following spaces

$$
\begin{align*}
\tilde{\mathbf{W}}= & \left\{\mathbf{q} \in L^{2}(\Omega)^{n} \quad \operatorname{div} \mathbf{q} \in L^{2}(\Omega)\right\}, \tag{array}\\
\mathbf{W}= & \left\{\mathbf{q} \in \tilde{\mathbf{W}} \operatorname{curl} A{ }^{1} \mathbf{q} \in L^{2}(\Omega)^{s}, \quad s=1 \text { for } n=2,\right. \\
& \left.s=3 \text { for } n=3, \quad \mathbf{n} \wedge A^{1} \mathbf{q}=0 \text { on } \Gamma\right\}
\end{align*}
$$

with norms

$$
\begin{aligned}
\|\mathbf{q}\|_{H(\mathrm{div})}^{2} & \equiv\|\mathbf{q}\|_{0 \Omega}^{2}+\|\mathrm{div} \mathbf{q}\|_{0 \Omega}^{2}, \\
\|\mathbf{q}\|_{H(\mathrm{dvv} \text { curl })}^{2} & \equiv\|\mathbf{q}\|_{H(\mathrm{div})}^{2}+\left\|\operatorname{curl} A^{-1} \mathbf{q}\right\|_{0 \Omega}^{2}
\end{aligned}
$$

Let $(., .)_{0} \Omega$ be the standard inner product in $L^{2}(\Omega)$ or $L^{2}(\Omega)^{n}$, correspondingly (.,. $)_{0}$ will be the inner product in $L^{2}(\Gamma)^{s}, s=1$ for $n=2, s=3$ for $n=3$

Now we are ready to formulate the least-squares minımization problem find $u \in V, \boldsymbol{\sigma} \in \mathbf{W}$ such that

$$
J(u, \boldsymbol{\sigma})=\inf _{v \in V \underset{\mathbf{q} \in \mathbf{W}}{ }} J(v, \mathbf{q}),
$$

where

$$
\begin{align*}
I(\imath, \mathbf{q})= & \left(\operatorname{curl} A^{-1} \mathbf{q}, \operatorname{curl} A^{-1} \mathbf{q}\right)_{0 \Omega} \\
& +(\operatorname{dıv} \mathbf{q}+c v-f, \operatorname{div} \mathbf{q}+c v-f)_{0 \Omega} \\
& +(\mathbf{q}+A \operatorname{grad} v, \mathbf{q}+A \operatorname{grad} v)_{0 \Omega} \tag{2}
\end{align*}
$$

vol 28 n ${ }^{\circ} 5,1994$

The corresponding variational statement is find $u \in V, \boldsymbol{\sigma} \in \mathbf{W}$ such that

$$
\begin{equation*}
a(u, \boldsymbol{\sigma}, v, \mathbf{q})=(f, \operatorname{div} \mathbf{q}+c v)_{0} \Omega \text { for all } v \in V, \quad \mathbf{q} \in \mathbf{W}, \tag{216}
\end{equation*}
$$

where

$$
\begin{align*}
a(u, \boldsymbol{\sigma}, v, \mathbf{q})= & \tilde{a}(u, \boldsymbol{\sigma}, v, \mathbf{q})+\left(\operatorname{curl} A^{-1} \boldsymbol{\sigma}, \operatorname{curl} A^{-1} \mathbf{q}\right)_{0 \Omega}, \\
\tilde{a}(u, \boldsymbol{\sigma}, v, \mathbf{q})= & \left(\operatorname{div} \boldsymbol{\sigma}+(u, \operatorname{div} \mathbf{q}+c v)_{0 \Omega}\right. \\
& \left.+(\boldsymbol{\sigma}+A \operatorname{grad} u, \mathbf{q}+A \operatorname{gid} \iota)_{0}\right) \tag{array}
\end{align*}
$$

In order to prove existence and uniqueness of the solution of (2 16) we have to show that the bilinear form $a(.,$.$) is coercive in the space$ (V, \mathbf{W}) First, we shall investıgate the coercivity of $\tilde{a}(.,$.$) in the larger$ space $(V, \tilde{\mathbf{W}})$

THEOREM 21 There exists a constant $C>0$ such that

$$
\begin{equation*}
C\left(\|v\|_{1 \Omega}^{2}+\|\mathbf{q}\|_{0 \Omega}^{2}+\|\operatorname{div} \mathbf{q}\|_{0 \Omega}^{2}\right) \leqslant \tilde{a}(v, \mathbf{q}, v, \mathbf{q}) \tag{219}
\end{equation*}
$$

for all $v \in V, \mathbf{q} \in \tilde{\mathbf{W}}$
Proof Let β be a positive constant to be specified later and E denote the identity $n \times n$ matrix Expanding $\tilde{a}(.,$.$) ,$

$$
\begin{aligned}
& \tilde{a}(v, \mathbf{q}, v, \mathbf{q}) \\
&= \int_{\Omega}\left[(\operatorname{dıv} \mathbf{q}+c v)^{2}+(\mathbf{q}+A \operatorname{grad} v)^{2}\right] d x \\
&= \int_{\Omega}\left[(\operatorname{dıv} \mathbf{q})^{2}+2 c v \operatorname{dıv} \mathbf{q}+(c v)^{2}+\mathbf{q}^{2}+2 \mathbf{q} \cdot A \operatorname{grad} v+(A \operatorname{grad} v)^{2}\right. \\
&\left.+2 \beta \mathbf{q} \cdot \operatorname{grad} v-2 \beta \mathbf{q} \cdot \operatorname{grad} v+(c-\beta)^{2} v^{2}-(c-\beta)^{2} v^{2}\right] d x
\end{aligned}
$$

Selectıvely integratıng by parts, setting $v=0$ on Γ and regrouping,

$$
\begin{aligned}
& \tilde{a}(v, \mathbf{q}, v, \mathbf{q}) \\
& =\int_{\Omega}\left[(\operatorname{dıv} \mathbf{q})^{2}+2(c-\beta) v \operatorname{dıv} \mathbf{q}+(c-\beta)^{2} v^{2}-(c-\beta)^{2} v^{2}+(c v)^{2}\right. \\
& \left.\quad+\mathbf{q}^{2}+2 \mathbf{q} \cdot(A-\beta E) \operatorname{grad} v+(A \operatorname{grad} v)^{2}\right] d x \\
& =\int_{\Omega}\left[(\operatorname{dıv} \mathbf{q}+(c-\beta) v)^{2}+\left(2 \beta c-\beta^{2}\right) v^{2}\right. \\
& \quad \\
& \quad+\mathbf{q}^{2}+2 \mathbf{q} \cdot(A-\beta E) \operatorname{grad} v+((A-\beta E) \operatorname{grad} v)^{2} \\
& \left.\quad \quad-((A-\beta E) \operatorname{grad} v)^{2}+(A \operatorname{grad} v)^{2}\right] d x
\end{aligned}
$$

$$
\begin{align*}
& =\int_{\Omega}\left[(\operatorname{div} \mathbf{q}+(c-\beta) v)^{2}+\left(2 \beta c-\beta^{2}\right) v^{2}\right. \\
& \left.\quad \quad+(\mathbf{q}+(A-\beta E) \operatorname{grad} v)^{2}+2 \beta A \operatorname{grad} v \cdot \operatorname{grad} v-\beta^{2}(\operatorname{grad} v)^{2}\right] d x \\
& \geqslant \int_{\Omega}\left[\left(2 \beta c_{0}-\beta^{2}\right) v^{2}+2 \beta A \operatorname{grad} v \cdot \operatorname{grad} v-\beta^{2}(\operatorname{grad} v)^{2}\right] d x \\
& \geqslant \int_{\Omega}\left[\left(2 \beta c_{0}-\beta^{2}\right) C_{F}^{2}+2 \beta \alpha_{1}-\beta^{2}\right](\operatorname{grad} v)^{2} d x \tag{2.20}
\end{align*}
$$

where we have used (2.3) and (2.4).
Let $\beta=\frac{\alpha_{0}}{1+C_{F}^{2}}$. Then by (2.7)

$$
\begin{align*}
\beta\left(2\left(c_{0} C_{F}^{2}+\alpha_{1}\right)-\beta\left(1+C_{F}^{2}\right)\right) & =\frac{\alpha_{0}}{1+C_{F}^{2}}\left(2\left(c_{0} C_{F}^{2}+\alpha_{1}\right)-\alpha_{0}\right) \\
& \geqslant \frac{\alpha_{0}^{2}}{1+C_{F}^{2}}>0 . \tag{2.21}
\end{align*}
$$

Using (2.21) in (2.20),

$$
\begin{equation*}
\tilde{a}(v, \mathbf{q} ; v, \mathbf{q}) \geqslant C|\operatorname{grad} v|_{0, \Omega}^{2} \geqslant C\|v\|_{1, \Omega}^{2} \tag{2.22}
\end{equation*}
$$

Obviously, from (2.18),

$$
\begin{aligned}
& \tilde{a}(v, \mathbf{q} ; v, \mathbf{q}) \geqslant\|\mathbf{q}+A \operatorname{grad} v\|_{0, \Omega}^{2} \\
& \tilde{a}(v, \mathbf{q} ; v, \mathbf{q}) \geqslant\|\operatorname{div} \mathbf{q}+c v\|_{0, \Omega}^{2}
\end{aligned}
$$

Hence,

$$
\begin{align*}
\|\mathbf{q}\|_{0, \Omega}^{2} & \leqslant 2\|\mathbf{q}+A \operatorname{grad} v\|_{0, \Omega}^{2}+2\|A \operatorname{grad} v\|_{0, \Omega}^{2} \\
& \leqslant C \tilde{a}(v, \mathbf{q} ; v, \mathbf{q}), \tag{2.23}\\
\|\operatorname{div} \mathbf{q}\|_{0, \Omega}^{2} & \leqslant 2\|\operatorname{div} \mathbf{q}+c v\|_{0, \Omega}^{2}+2\|c v\|_{0, \Omega}^{2} \\
& \leqslant C \tilde{a}(v, \mathbf{q} ; v, \mathbf{q}) . \tag{2.24}
\end{align*}
$$

Combining (2.22)-(2.24) we get (2.19).
From Theorem 2.1 we obtain directly
THEOREM 2.2:The bilinear form $a(. ;$) is coercive in (V, \mathbf{W}), i.e. there exists $C>0$ such that

$$
\begin{equation*}
C\left(\|v\|_{1, \Omega}^{2}+\|\mathbf{q}\|_{H(\mathrm{~d} v, \text { curl })}^{2}\right) \leqslant a(v, \mathbf{q} ; v, \mathbf{q}) \tag{2.25}
\end{equation*}
$$

for all $v \in V, \mathbf{q} \in \mathbf{W}$.
vol. $28, n^{\circ} 5,1994$

Remark The inequality (225) does not depend on the boundary condition (2 12) In order to demonstrate existence and uniqueness we need only the boundary condition (2 10)

ThEOREM 23 Let $f \in L^{2}(\Omega)$ Then the problem (216) has a unique solutıon $u \in V, \boldsymbol{\sigma} \in \mathbf{W}$

Proof Since $a(.,$.$) is contınuous and coercive, the result follows from$ the Lax-Milgram lemma

3 FINITE ELEMENT APPROXIMATION

Next, we define finite element spaces corresponding to V and \mathbf{W} Let \mathcal{C}_{h} be a partition of the domain Ω into finite elements, 1 e $\Omega=\underset{K \in \mathscr{C}_{h}}{\cup} K$ and h be the maxımum diameter of the elements We suppose that the same partition is used in the definition of approximation spaces for u and σ although this is not necessary

Let $P_{k}(\Sigma), \Sigma \subset R^{n}$, be the set of polynomials of degree k on Σ and let \hat{K} denote the master element Suppose that for any $K \in \mathfrak{C}_{h}$ there exists a mapping $F_{K} \quad \hat{K} \rightarrow K, F_{K}(\hat{K})=K$ with components $\left(F_{K}\right)_{t} \in P_{s}(\hat{K}), \imath=1$, , \mathbf{n} As usual, we have the correspondence $v_{h}(x)=\hat{v}_{h}(\hat{x}), \quad \mathbf{q}_{h}(x)=$ $\hat{\mathbf{q}}_{h}(\hat{x})$ for any $x=F_{K}(\hat{x}), \hat{x} \in \hat{K}$, and any functions $\hat{v}_{n}, \hat{\mathbf{q}}_{h}$ on \hat{K} Define the following approximation spaces (of piecewise polynomials of degree k and r respectıvely for V_{h} and \mathbf{W}_{h})

$$
\begin{align*}
V_{h}= & \left\{\left.v_{h} \in C^{0}(\Omega) \quad v_{h}\right|_{K}=\left.\hat{v}_{h}\right|_{K} \in P_{k}(\hat{K}) \quad \forall K \in \mathcal{V}_{h}, \quad v_{h}=0 \text { on } \Gamma\right\}, \tag{array}\\
\mathbf{W}_{h}= & \begin{cases}\left.\mathbf{q}_{h} \in C^{0}(\Omega)^{n} \quad\left(\mathbf{q}_{h}\right)_{\imath}\right|_{K}=\left.\left(\hat{\mathbf{q}}_{h}\right)_{l}\right|_{K} \in P_{r}(\hat{K}) \\
& \left.\imath=1, \quad, n, \quad \forall K \in \mathfrak{C}_{h}, n \wedge A{ }^{1} \mathbf{q}_{h}=0 \text { at the nodes on } \Gamma\right\}\end{cases}
\end{align*}
$$

In general, we suppose that $1 \leqslant s \leqslant \max \{k, r\}$, where s is the degree of polynomials used in the mappings $F_{K}, K \in \mathscr{G}_{h}$ This means that for one of the variables (u or $\boldsymbol{\sigma}$) we may have isoparametric elements, while for the other variable the elements may be superparametric (see Carey and Oden [3])

Now, let us comment on the boundary condition Since we can use curved elements and we may have a non-constant matrix A then the boundary condition $n \wedge A{ }^{1} \boldsymbol{\sigma}=0$ on Γ cannot be satisfied on the whole boundary We require this condition to be satisfied only at the nodes on the boundary Hence $\mathbf{W}_{h} \nsubseteq \mathbf{W}$ and we have a nonconforming finite element method find
$u_{h} \in V_{h}, \boldsymbol{\sigma}_{h} \in \mathbf{W}_{h}$ such that
$a\left(u_{h}, \mathbf{\sigma}_{h} ; v_{h}, \mathbf{q}_{h}\right)=\left(f, \operatorname{div} \mathbf{q}_{h}+c v_{h}\right)_{0, \Omega} \quad$ for all $v_{h} \in V_{h}, \quad \mathbf{q}_{h} \in \mathbf{W}_{h}$.

Using (2.8)-(2.11) for the exact solution we get the orthogonality property

$$
\begin{equation*}
a\left(u-u_{h}, \boldsymbol{\sigma}-\boldsymbol{\sigma}_{h} ; v_{h}, \mathbf{q}_{h}\right)=0 \quad \text { for all } \quad v_{h} \in V_{h}, \quad \mathbf{q}_{h} \in \mathbf{W}_{h} . \tag{3.4}
\end{equation*}
$$

Since the inequality (2.25) does not depend on the boundary condition (2.12) we have

$$
\begin{equation*}
C\left(\left\|v_{h}\right\|_{1, \Omega}^{2}+\left\|\mathbf{q}_{h}\right\|_{H(\mathrm{dvv}, \mathrm{curl})}^{2}\right) \leqslant a\left(v_{h}, \mathbf{q}_{h} ; v_{h}, \mathbf{q}_{h}\right) \tag{3.5}
\end{equation*}
$$

for all $v_{h} \in V_{h}, \mathbf{q}_{h} \in \mathbf{W}_{h}$.
Hence the discrete problem (3.3) has a unique solution. Also, it follows in the same manner as in [18] that the condition number of the resulting linear system is $O\left(h^{-2}\right)$.

In the cases when Ω is a 2D-polygon (3D-polytope) the tangential derivative is not uniquely specified at a corner point and, hence, we have several boundary conditions at the corner points of Ω. The value of σ_{h} at some corner point can be determined following an approach similar to the one developed in [2] for boundary-flux calculations. This issue and other issues concerning the implementation will be discussed in a forthcoming paper. Note that in the case of affine elements and constant matrix A the boundary condition $\mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}_{h}=0$ is satistied exactly.

4. ERROR ESTIMATES

Let $v_{I} \in V_{h}$ and $\mathbf{q}_{I} \in \mathbf{W}_{h}$ be the standard finite element interpolants of some function v and some vector function q respectively, i.e. we have $v(x)=v_{I}(x)$ and $\mathbf{q}(x)=\mathbf{q}_{I}(x)$ at any node x (of course, we suppose that v and \mathbf{q} are defined everywhere over $\bar{\Omega}$). From approximation theory we have the estimates (see Ciarlet [7]),

$$
\begin{align*}
\left\|u-u_{I}\right\|_{0, \Omega}+h\left\|u-u_{I}\right\|_{1, \Omega} & \leqslant C h^{k+1}\|u\|_{k+1, \Omega} \tag{4.1}\\
\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{I}\right\|_{0, \Omega}+h\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{I}\right\|_{H(\mathrm{dvv}, \mathrm{curl})} & \leqslant C h^{r+1}\|\boldsymbol{\sigma}\|_{r+1, \Omega} \tag{4.2}
\end{align*}
$$

THEOREM 4.1: Let $k=r$. Then

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{1, \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{H(\mathrm{dvv}, \mathrm{curl})} \leqslant C h^{k}\left(\|u\|_{k+1, \Omega}+\|\boldsymbol{\sigma}\|_{k+1, \Omega}\right) \tag{4.3}
\end{equation*}
$$

Proof: Using Theorem 2.2, the orthogonality property (3.4) and the interpolation estimates (4.1) and (4.2),

$$
\begin{aligned}
& \left\|u_{h}-u_{I}\right\|_{1 \Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right\|_{H(\mathrm{~d} \mathrm{dv} \text { curl })}^{2} \\
& \leqslant C a\left(u_{h}-u_{I}, \boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I} ; u_{h}-u_{I}, \boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right) \\
& =C a\left(u-u_{I}, \boldsymbol{\sigma}-\boldsymbol{\sigma}_{I} ; u_{h}-u_{I}, \boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right) \\
& \leqslant C\left(\left\|u-u_{I}\right\|_{1 \Omega}^{2}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{I}\right\|_{H(\mathrm{div} \text { curl) }}^{2}\right)^{1 / 2} \\
& \quad \times\left(\left\|u_{h}-u_{I}\right\|_{1, \Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right\|_{H(\mathrm{dvv}, \mathrm{curl})}^{2}\right)^{1 / 2} \\
& \leqslant C h^{h}\left(\|u\|_{k+1 \Omega}+\|\boldsymbol{\sigma}\|_{k+1 \Omega}\right)\left(\left\|u_{h}-u_{I}\right\|_{1, \Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right\|_{H(\mathrm{dvv}, \mathrm{curl})}^{2}\right)^{1 / 2}
\end{aligned}
$$

Applying again (4.1), (4.2) and the triangle inequality we get (4.3).
Now we consider the case of different degree polynomials for u_{h} and $\boldsymbol{\sigma}_{h}$.

TheOrem 4.2: Let $k+1=r$. Then

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0, \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{1, \Omega} \leqslant C h^{r}\left(\|u\|_{r, \Omega}+\|\boldsymbol{\sigma}\|_{r+1, \Omega}\right) . \tag{4.4}
\end{equation*}
$$

Proof For any $v \in V$ let $S_{h} v \in V_{h}$ be the following projection:
$\left(A \operatorname{grad}\left(v-S_{h} v\right), A \operatorname{grad} v_{h}\right)_{0, \Omega}+\left(c\left(v-S_{h} v\right), c v_{h}\right)_{0, \Omega}=0$
for all $v_{h} \in V_{h}$.
From standard finite element theory, we have the estımate

$$
\begin{equation*}
\left\|v-S_{h} v\right\|_{0 \Omega}+h\left\|v-S_{h} v\right\|_{1 \Omega} \leqslant C h^{h+1}\|v\|_{h+1 \Omega} . \tag{4.6}
\end{equation*}
$$

Using Theorem 2.2 and the orthogonality property (3.4) in the same manner as before but with $S_{h} u$,

$$
\begin{aligned}
& C\left(\left\|u_{h}-S_{h} u\right\|_{1, \Omega}^{2}+\left\|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right\|_{H(\mathrm{div}, \mathrm{cur})}^{2}\right) \\
& \leqslant a\left(u_{h}-S_{h} u, \boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I} ; u_{h}-S_{h} u, \boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right) \\
& =a\left(u-S_{h} u, \boldsymbol{\sigma}-\boldsymbol{\sigma}_{I} ; u_{h}-S_{h} u, \boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right) \\
& =\left(\operatorname{div}\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{I}\right), \operatorname{div}\left(\boldsymbol{\sigma}_{h}-\sigma_{I}\right)\right)_{0, \Omega}+\left(c\left(u-S_{h} u\right), \operatorname{div}\left(\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right)\right)_{0, \Omega} \\
& +\left(\operatorname{div}\left(\boldsymbol{\sigma}-\sigma_{l}\right) \cdot c\left(u_{h}-S_{h} u\right)\right)_{0, \Omega} \\
& +\left(\text { cuil } A{ }^{\prime}\left(\boldsymbol{\sigma} \quad \boldsymbol{\sigma}_{l}\right), \operatorname{curl} A^{-1}\left(\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{l}\right)\right)_{0 \Omega} \\
& +\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{I}, A \operatorname{grad}\left(u_{h}-S_{h} u\right)\right)_{0, \Omega}-\left(u-S_{h} u, \operatorname{div} A^{\prime}\left(\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{l}\right)\right)_{0, \Omega} \\
& +\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{l}, \boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}\right)_{0, \Omega},
\end{aligned}
$$

where we have used (4.5) and integration by parts. Hence from (4.2) and (4.6),

$$
\begin{align*}
& \left(\left\|u_{h}-S_{h} u\right\|_{1, \Omega}+\left\|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right\|_{H(\mathrm{dvv}, \mathrm{curl})}\right)^{2} \\
& \quad \leqslant C h^{r}\left(\|\boldsymbol{\sigma}\|_{r+1, \Omega}+\|u\|_{r, \Omega}\right)\left(\left\|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right\|_{1, \Omega}+\left\|u_{h}-S_{h} u\right\|_{1, \Omega}\right) . \tag{4.7}
\end{align*}
$$

Now we shall prove that

$$
\begin{equation*}
\left\|\mathbf{q}_{h}\right\|_{1, \Omega} \leqslant C\left\|\mathbf{q}_{h}\right\|_{H(\mathrm{dvv}, \text { curl })} \tag{4.8}
\end{equation*}
$$

for all $\mathbf{q}_{h} \in \mathbf{W}_{h}$. The following estimate can be found in Saranen [22, Theorem 2.2], see also Neittaanmäki and Saranen [17, Theorem 2.2]:
$\|\mathbf{q}\|_{1, \Omega} \leqslant C\left(\left\|\operatorname{curl} A^{-1} \mathbf{q}\right\|_{0, \Omega}+\|\operatorname{div} \mathbf{q}\|_{0, \Omega}+\|\mathbf{q}\|_{0, \Omega}+\left\|\mathbf{n} \wedge A^{-1} \mathbf{q}\right\|_{1 / 2, \Gamma}\right)$
for all $\mathbf{q} \in H^{1}(\Omega)^{n}$. We set $\mathbf{q}=\mathbf{q}_{h}$ and in order to get (4.8) it remains to estimate $\left\|\mathbf{n} \wedge A^{-1} \mathbf{q}_{h}\right\|_{1 / 2, \Gamma}$. Let $K \subset \Omega$ be any element that has a side (face) coincident with the boundary Γ, i.e. $K \cap \Gamma=e, \operatorname{dim}(e)=n-1$. Let \hat{K} be the corresponding master element and \hat{e} be the side (face) of \hat{K} corresponding to e. As usual, $\mathbf{q}_{h}(x)=\hat{\mathbf{q}}_{h}(\hat{x}), x=F_{K}(\hat{x}), \hat{x} \in \hat{K}$, where F_{K} is the mapping from \hat{K} onto K. Similarly, $A^{-1}(x)=\hat{A}^{-1}(\hat{x}), \mathbf{n}(x)=$ $\hat{\mathbf{n}}(\hat{x})$. Then

$$
\begin{aligned}
\left\|\mathbf{n} \wedge A^{-1} \mathbf{q}_{h}\right\|_{1 / 2, e} & \leqslant C h^{-1 / 2}(\operatorname{meas}(e))^{1 / 2}\left\|\hat{\mathbf{n}} \wedge \hat{A}^{-1} \hat{\mathbf{q}}_{h}\right\|_{1 / 2, \hat{e}} \\
& \leqslant C h^{-1 / 2}(\operatorname{meas}(e))^{1 / 2}\left\|\hat{\mathbf{n}} \wedge \hat{A}^{-1} \hat{\mathbf{q}}_{h}\right\|_{r+1, \dot{e}}
\end{aligned}
$$

and since $\mathbf{n} \wedge A^{-1} \mathbf{q}_{h}=0$ at the nodes on e we get by the Bramble-Hilbert lemma

$$
\begin{aligned}
\left\|\mathbf{n} \wedge A^{-1} \mathbf{q}_{h}\right\|_{1 / 2, e} & \leqslant C h^{-1 / 2}(\operatorname{meas}(e))^{1 / 2}\left|\hat{\mathbf{n}} \wedge \hat{A}^{-1} \hat{\mathbf{q}}_{h}\right|_{r+1, \bar{e}} \\
& \leqslant C h^{-1 / 2}(\operatorname{meas}(e))^{1 / 2} \sum_{s=0}^{r+1}|\hat{\mathbf{n}}|_{r+1-s, \infty, \hat{e}}\left|\hat{A}^{-1} \hat{\mathbf{q}}_{h}\right|_{s, \hat{e}} .
\end{aligned}
$$

Since the boundary is assumed smooth, we have

$$
|\hat{\mathbf{n}}|_{r+1-s, \infty, \dot{e}} \leqslant C h^{r+1-s}, \quad s=0, \ldots, r+1
$$

Also, from the smoothness of coefficients,

$$
\left|\hat{A}^{-1}\right|_{s, \infty, \dot{e}} \leqslant C h^{s}, \quad s=0, \ldots, r+1
$$

Now, using equivalence of the norms in finite dimensional spaces,

$$
\left\|\mathbf{n} \wedge A^{-1} \mathbf{q}_{h}\right\|_{1 / 2, e} \leqslant C h^{-1 / 2}(\text { meas }(e))^{1 / 2} \sum_{s=0}^{r} h^{r+1-s}\left|\hat{\mathbf{q}}_{h}\right|_{s, \dot{e}}
$$

$$
\begin{aligned}
& \leqslant C h^{-1 / 2}(\operatorname{meas}(e))^{1 / 2}\left(h^{2}\left|\hat{\mathbf{q}}_{h}\right|_{0, \dot{e}}+h\left|\hat{\mathbf{q}}_{h}\right|_{1, \dot{e}}\right) \\
& \leqslant C h^{-1 / 2}(\operatorname{meas}(e))^{1 / 2}\left(h^{2}\left|\hat{\mathbf{q}}_{h}\right|_{0, K}+h\left|\hat{\mathbf{q}}_{h}\right|_{1, \dot{K}}\right) \\
& \leqslant C h^{-1 / 2}(\operatorname{meas}(e))^{1 / 2} h^{2}(\operatorname{meas}(K))^{-1 / 2}\left\|\mathbf{q}_{h}\right\|_{1, K} \\
& \leqslant C h\left\|\mathbf{q}_{h}\right\|_{1, K} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|\mathbf{n} \wedge A^{-1} \mathbf{q}_{h}\right\|_{1 / 2, \Gamma} \leqslant C h\left\|\mathbf{q}_{h}\right\|_{1, \Omega_{b}}, \tag{4.10}
\end{equation*}
$$

where Ω_{b} is the set of elements which have a common side (face) with the boundary Γ. Then (4.10) and (4.9) with $\mathbf{q}=\mathbf{q}_{h}$ imply

$$
\begin{aligned}
\left\|\mathbf{q}_{h}\right\|_{1, \Omega} & \leqslant C\left(\left\|\mathbf{q}_{h}\right\|_{H(\mathrm{dvv}, \mathrm{curl})}+\left\|\mathbf{n} \wedge A^{-1} \mathbf{q}_{h}\right\|_{1 / 2, \Gamma}\right) \\
& \leqslant C\left\|\mathbf{q}_{h}\right\|_{H(\mathrm{dvv}, \mathrm{curl})}+C h\left\|\mathbf{q}_{h}\right\|_{1, \Omega_{b}}
\end{aligned}
$$

Hence, for sufficiently small h, the term $C h\left\|\mathbf{q}_{h}\right\|_{1, \Omega_{b}}$ is absorbed by $\left\|\mathbf{q}_{h}\right\|_{1, \Omega}$ and we get (4.8). The inequality (4.10) explains why the assumption " h is sufficiently small" is not very restrictive.

Now (4.7) becomes

$$
\begin{equation*}
\left\|u_{h}-S_{h} u\right\|_{1, \Omega}+\left\|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right\|_{1, \Omega} \leqslant C h^{r}\left(\|u\|_{r, \Omega}+\|\boldsymbol{\sigma}\|_{r+1, \Omega}\right) \tag{4.11}
\end{equation*}
$$

Applying the estimate

$$
\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{I}\right\|_{1, \Omega} \leqslant C h^{r}\|\boldsymbol{\sigma}\|_{r+1, \Omega}
$$

(4.6), (4.11) and the triangle inequality we get the desired result.

Remark: Obviously, the validity of (4.8) does not depend on k. Hence, using (4.8) we get (in the case of $k=r$)

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{1, \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{1, \Omega} \leqslant C h^{h}\left(\|u\|_{k+1, \Omega}+\|\boldsymbol{\sigma}\|_{k+1, \Omega}\right) \tag{4.12}
\end{equation*}
$$

which improves the estimate in Theorem 4.1.
As an intermediate step toward the final optimal estimates, we introduce the following auxiliary problem : find $\xi \in V, \boldsymbol{\eta} \in \mathbf{W}$ such that

$$
\begin{equation*}
a(\xi, \boldsymbol{\eta} ; v, \mathbf{q})=(G, v)_{0, \Omega}+(\mathbf{F}, \mathbf{q})_{0, \Omega} \quad \text { for all } \quad v \in V, \mathbf{q} \in \mathbf{W} \tag{4.13}
\end{equation*}
$$

where $G \in H^{1}(\Omega)$ and $\mathbf{F} \in H^{1}(\Omega)^{n}$ will be specified later.

THEOREM 43 The folloning a pion estimates hold

$$
\begin{align*}
& \|\xi\|_{2 \Omega}+\|\boldsymbol{\eta}\|_{2 \Omega} \leqslant C\left(\|G\|_{0 \Omega}+\|\mathbf{F}\|_{0 \Omega}\right), \tag{array}\\
& \|\xi\|_{3 \Omega}+\|\boldsymbol{\eta}\|_{2 \Omega} \leqslant C\left(\|G\|_{1 \Omega}+\|\mathbf{F}\|_{0 \Omega}\right) \tag{array}
\end{align*}
$$

Proof Usıng the fırst Frıedrıchs' inequalıty (Saranen [21], Křıžek, Neıttaanmakı [13]),

$$
\begin{equation*}
C\|\mathbf{q}\|_{1 \Omega} \leqslant\left\|\operatorname{curl} A^{1} \mathbf{q}\right\|_{0 \Omega}+\|\operatorname{div} \mathbf{q}\|_{0 \Omega}+\|\mathbf{q}\|_{0 \Omega} \tag{416}
\end{equation*}
$$

Then from Theorem 22 and (416),

$$
\begin{aligned}
\|\xi\|_{1 \Omega}^{2}+\|\boldsymbol{\eta}\|_{1 \Omega}^{2} & \leqslant C\left(\|\xi\|_{1 \Omega}^{2}+\|\boldsymbol{\eta}\|_{H(\mathrm{div} \text { curl })}^{2}\right) \\
& \leqslant C a(\xi, \boldsymbol{\eta}, \xi, \boldsymbol{\eta}) \\
& \leqslant C\left((G, \xi)_{0 \Omega}+(\mathbf{F}, \boldsymbol{\eta})_{0 \Omega}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|\xi\|_{1 \Omega}+\|\boldsymbol{\eta}\|_{1 \Omega} \leqslant C\left(\|G\|_{0 \Omega}+\|\mathbf{F}\|_{0 \Omega}\right) \tag{array}
\end{equation*}
$$

Setting $v=0$ in (4 13) we obtain the variational problem find $\boldsymbol{\eta} \in \mathbf{W}$ such that
$\left(\operatorname{curl} A{ }^{1} \boldsymbol{\eta}, \operatorname{curl} A{ }^{1} \mathbf{q}\right)_{0 \Omega}+(\operatorname{dıv} \boldsymbol{\eta}, \operatorname{div} \mathbf{q})_{0 \Omega}+(\boldsymbol{\eta}, \mathbf{q})_{0} \Omega$

$$
\begin{equation*}
=(\mathbf{F}-A \operatorname{grad} \xi+\operatorname{grad} c \xi, \mathbf{q})_{0} \Omega \tag{418}
\end{equation*}
$$

holds tor all $\mathbf{q} \in \mathbf{W}$ We have the regularity estımate (Mehra [14], cited in Saranen [22], Neittaanmakı and Saranen [16])

$$
\begin{equation*}
\|\boldsymbol{\eta}\|_{2 \Omega} \leqslant C\|\mathbf{F}-A \operatorname{grad} \xi+\operatorname{grad} c \xi\|_{0 \Omega} \tag{419}
\end{equation*}
$$

Sımılarly, letting $\mathbf{q}=0$ in (4 13) and using integration by parts we get the problem find $\xi \in V$ such that
$(A \operatorname{grad} \xi, A \operatorname{grad} v)_{0 \Omega}+(c \xi, c v)_{0 \Omega}=\left(G+\operatorname{div} A^{l} \boldsymbol{\eta}-c \operatorname{div} \boldsymbol{\eta}, v\right)_{0 \Omega}$
for all $v \in V$ The following a prion estımates tor this problem hold (see e g Grisvard [11])
(1) if the doman is convex or the boundary Γ is of class C^{11}

$$
\begin{equation*}
\|\xi\|_{2 \Omega} \leqslant C\left\|G+\operatorname{div} A^{T} \boldsymbol{\eta}-c \operatorname{div} \boldsymbol{\eta}\right\|_{0 \Omega}, \tag{421}
\end{equation*}
$$

(11) if the boundary Γ is of class C^{21}

$$
\begin{equation*}
\|\xi\|_{3 \Omega} \leqslant C\left\|G+\operatorname{div} A^{T} \boldsymbol{\eta}-c \operatorname{div} \boldsymbol{\eta}\right\|_{1 \Omega} \tag{4}
\end{equation*}
$$

Then

$$
\begin{align*}
\|\xi\|_{2 \Omega}+\|\boldsymbol{\eta}\|_{2 \Omega} \leqslant & C\left\|G+\operatorname{dıv} A^{T} \boldsymbol{\eta}-c \operatorname{dıv} \boldsymbol{\eta}\right\|_{0 \Omega} \\
& +C\|\mathbf{F}-A \operatorname{grad} \xi+\operatorname{grad} c \xi\|_{0 \Omega} \\
\leqslant & C\left(\|G\|_{0 \Omega}+\|\mathbf{F}\|_{0 \Omega}\right)+C\left(\|\xi\|_{1 \Omega}+\|\boldsymbol{\eta}\|_{1 \Omega}\right) \\
\leqslant & C\left(\|G\|_{0 \Omega}+\|\mathbf{F}\|_{0 \Omega}\right) \tag{423}
\end{align*}
$$

where (417), (419) and (4 21) have been used Sımılarly, applying (4 17), (4 19), (4 22) and (4 23),

$$
\begin{align*}
\|\xi\|_{3 \Omega}+\|\boldsymbol{\eta}\|_{2 \Omega} \leqslant & C\left\|G+\operatorname{dıv} A^{T} \boldsymbol{\eta}-c \operatorname{dıv} \boldsymbol{\eta}\right\|_{1 \Omega} \\
& +C\|\mathbf{F}-A \operatorname{grad} \xi+\operatorname{grad} c \xi\|_{0 \Omega} \\
\leqslant & C\left(\|G\|_{1 \Omega}+\|\mathbf{F}\|_{0 \Omega}\right)+C\left(\|\xi\|_{1 \Omega}+\|\boldsymbol{\eta}\|_{2 \Omega}\right) \\
\leqslant & C\left(\|G\|_{1 \Omega}+\|\mathbf{F}\|_{0 \Omega}\right) \tag{array}
\end{align*}
$$

which is the desired result
Now, we are able to prove the final estimates
THEOREM 44 If $k=r$ then

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{\Omega \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{0 \Omega} \leqslant C h^{\ell+1}\left(\|u\|_{k+1 \Omega}+\|\boldsymbol{\sigma}\|_{k+1 \Omega}\right) \tag{425}
\end{equation*}
$$

If $k+1=1, k>1$, then

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{-1 \Omega}+\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{0 \Omega} \leqslant C h^{+1}\left(\|u\|_{r \Omega}+\|\boldsymbol{\sigma}\|_{r+1 \Omega}\right) \tag{426}
\end{equation*}
$$

Proof Let us consider the variational problem (4 18) Obviously, $\boldsymbol{\eta}$ is a weak solution of the following problem
$-\left(A^{1}\right)^{\prime} \operatorname{curl}\left(\right.$ curl $\left.A{ }^{1} \boldsymbol{\eta}\right)-$ gadd div $\boldsymbol{\eta}+\boldsymbol{\eta}$

- $\mathbf{F} \quad \lambda$ grad $\xi+\operatorname{grad}(\xi$ in Ω

$$
\begin{aligned}
\mathbf{n} \wedge A & \boldsymbol{\eta}=0 \\
\text { div } \boldsymbol{\eta}=0 & \text { on } \quad \Gamma, \\
\text { on } & \Gamma,
\end{aligned}
$$

see Saranen [22] Then for $\mathbf{p} \in H^{1}(\Omega)^{n}$ we get $\left(\operatorname{curl} A^{-1} \boldsymbol{\eta}, \operatorname{curl} A{ }^{1} \mathbf{p}\right)_{0} \Omega+(\operatorname{div} \boldsymbol{\eta}, \operatorname{div} \mathbf{p})_{0} \Omega+(\boldsymbol{\eta}, \mathbf{p})_{0} \Omega$

$$
\begin{aligned}
= & \left(-\left(A^{-1}\right)^{T} \operatorname{curl}\left(\operatorname{curl} A^{-1} \boldsymbol{\eta}\right)-\operatorname{grad} \operatorname{div} \boldsymbol{\eta}+\boldsymbol{\eta}, \mathbf{p}\right)_{0 \Omega} \\
& +\left(\operatorname{curl} A^{-1} \boldsymbol{\eta}, \mathbf{n} \wedge A^{-1} \mathbf{p}\right)_{0 \Gamma} \\
= & (\mathbf{F}-A \operatorname{grad} \xi+\operatorname{grad} c \xi, \mathbf{p})_{0 \Omega}+\left(\operatorname{curl} A^{1} \boldsymbol{\eta}, \mathbf{n} \wedge A^{-1} \mathbf{p}\right)_{0 \Gamma}
\end{aligned}
$$

Hence

$$
\begin{equation*}
(\mathbf{F}, \mathbf{p})_{0, \Omega}=a(\xi, \boldsymbol{\eta} ; 0, \mathbf{p})-\left(\operatorname{curl} A^{-1} \boldsymbol{\eta}, \mathbf{n} \wedge A^{-1} \mathbf{p}\right)_{0, \Gamma} \tag{4.27}
\end{equation*}
$$

for all $\mathbf{p} \in H^{1}(\Omega)^{n}$. On the other hand, from (4.13) with $\mathbf{q}=\mathbf{0}$,

$$
\begin{equation*}
(G, v)_{0, \Omega}=a(\xi, \boldsymbol{\eta} ; v, \mathbf{0}) \text { for all } v \in V . \tag{4.28}
\end{equation*}
$$

Setting $\mathbf{p}=\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}$ and $v=u-u_{h}$ in (4.27) and (4.28) respectively, and using (3.4) and (2.12)

$$
\begin{align*}
(\mathbf{F}, \boldsymbol{\sigma}- & \left.\boldsymbol{\sigma}_{h}\right)_{0, \Omega}+\left(G, u-u_{h}\right)_{0, \Omega} \\
= & a\left(\xi, \boldsymbol{\eta} ; u-u_{h}, \boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right)-\left(\operatorname{curl} A^{-1} \boldsymbol{\eta}, \mathbf{n} \wedge A^{-1}\left(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right)\right)_{0, \Gamma} \\
= & a\left(\xi-\xi_{l}, \boldsymbol{\eta}-\boldsymbol{\eta}_{l} ; u-u_{h}, \boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right) \\
& +\left(\operatorname{curl} A^{-1} \boldsymbol{\eta}, \mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}_{l}\right)_{0}, \tag{4.29}
\end{align*}
$$

where ξ_{l} and $\boldsymbol{\eta}_{l}$ are the interpolants of ξ and $\boldsymbol{\eta}$.
First, we estimate the boundary term in (4.29). Using the trace theorem and (4.14),

$$
\begin{align*}
\left(\operatorname{curl} A^{-1} \boldsymbol{\eta}, \mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}_{h}\right)_{0, \Gamma} & \leqslant\left\|\operatorname{curl} A^{-1} \boldsymbol{\eta}\right\|_{0, \Gamma}\left\|\mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}_{h}\right\|_{0, \Gamma} \\
& \leqslant C\|\boldsymbol{\eta}\|_{2, \Omega}\left\|\mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}_{h}\right\|_{0, \Gamma} \\
& \leqslant C\left(\|G\|_{0, \Omega}+\|\mathbf{F}\|_{0, \Omega}\right)\left\|\mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}_{h}\right\|_{0, \Gamma} . \tag{4.30}
\end{align*}
$$

In order to estimate $\left\|\mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}_{h}\right\|_{0, \Gamma}$ the technique from the proof of (4.8) in Theorem 4.2 will be used. As before, let $K \subset \Omega$ be an element which has a side (face) coincident with the boundary $\Gamma, K \cap \Gamma=e$. Then

$$
\begin{align*}
\left\|\mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}_{h}\right\|_{0, e} \leqslant & C(\operatorname{meas}(e))^{1 / 2} \sum_{s=0}^{\prime} h^{r+1-s}\left|\hat{\boldsymbol{\sigma}}_{h}\right|_{s, \dot{e}} \\
\leqslant & C(\operatorname{meas}(e))^{1 / 2}\left(\sum_{s=0}^{r} h^{r+1-s}\left|\hat{\boldsymbol{\sigma}}_{h}-\hat{\boldsymbol{\sigma}}_{I}\right|_{s, \hat{e}}\right. \\
& \left.+\sum_{r=0}^{1} h^{r+1-s}\left(\left|\hat{\boldsymbol{\sigma}}_{I}-\hat{\boldsymbol{\sigma}}\right|_{s, \dot{e}}+|\hat{\boldsymbol{\sigma}}|_{s, \dot{e}}\right)\right) . \tag{4.31}
\end{align*}
$$

Now, from the equivalence of the norms in finite dimensional spaces,

$$
\begin{align*}
\sum_{s=0}^{\prime} h^{r+1-s}\left|\hat{\boldsymbol{\sigma}}_{h}-\hat{\boldsymbol{\sigma}}_{I}\right|_{s, \dot{e}} & \leqslant C h\left|\hat{\boldsymbol{\sigma}}_{h}-\hat{\boldsymbol{\sigma}}_{I}\right|_{0, \dot{e}} \\
& \leqslant C h(\operatorname{meas}(e))^{-1 / 2}\left|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}_{I}\right|_{0, e} \\
& \leqslant C h(\operatorname{meas}(e))^{-1 / 2}\left(\left|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}\right|_{0, e}+\left|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{l}\right|_{0, e}\right) . \tag{4.32}
\end{align*}
$$

Also,

$$
\begin{align*}
\sum_{s=0}^{r} h^{r+1-s}\left(\left|\hat{\boldsymbol{\sigma}}_{I}-\hat{\boldsymbol{\sigma}}\right|_{s, e}+|\hat{\boldsymbol{\sigma}}|_{s, e}\right) & \leqslant C \sum_{s-0}^{r} h^{r+1-s}\left(|\hat{\boldsymbol{\sigma}}|_{r, e}+|\hat{\boldsymbol{\sigma}}|_{s, e}\right) \\
& \leqslant C h^{r+1}(\operatorname{meas}(e))^{-1 / 2}\|\boldsymbol{\sigma}\|_{r, e} \tag{4.33}
\end{align*}
$$

Hence (4.31)-(4.33) lead to

$$
\begin{align*}
\left\|\mathbf{n} \wedge A^{-1} \boldsymbol{\sigma}_{h}\right\|_{0, \Gamma} & \leqslant C h\left(\left|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}\right|_{0, \Gamma}+\left|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{I}\right|_{0, \Gamma}\right)+C h^{r+1}\|\boldsymbol{\sigma}\|_{r, \Gamma} \\
& \leqslant C h\left\|\boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}\right\|_{1, \Omega}+C h^{r+1}\|\boldsymbol{\sigma}\|_{r+1, \Omega} \tag{4.34}
\end{align*}
$$

where the trace theorem has been used. This completes the estimate for the boundary term in (4.29).

Now we proceed with the first term in (4.29). Using the Cauchy-Schwarz inequality,

$$
\begin{aligned}
a\left(\xi-\xi_{I}, \boldsymbol{\eta}-\boldsymbol{\eta}_{I} ; u-u_{h},\right. & \left.\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right) \\
\leqslant & C\left(\left\|\boldsymbol{\eta}-\boldsymbol{\eta}_{I}\right\|_{1 \Omega}+\left\|\xi-\xi_{I}\right\|_{1, \Omega}\right)\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{1, \Omega} \\
& +C\left(\left\|\boldsymbol{\eta}-\boldsymbol{\eta}_{I}\right\|_{1, \Omega}+\left\|\xi-\xi_{I}\right\|_{0, \Omega}\right)\left\|u-u_{h}\right\|_{0, \Omega} \\
& +C\left(\left\|\boldsymbol{\eta}-\boldsymbol{\eta}_{I}\right\|_{0, \Omega}+\left\|\xi-\xi_{I}\right\|_{1, \Omega}\right)\left\|u-u_{h}\right\|_{1, \Omega} .
\end{aligned}
$$

Conside, the case $h=1$ and select $G=u-u_{/}$and $\mathbf{F}=\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}$ I hen

$$
\begin{align*}
& a\left(\xi-\xi_{I}, \boldsymbol{\eta}-\boldsymbol{\eta}_{I} ; u-u_{h}, \boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right) \\
& \leqslant C h\left(\|\boldsymbol{\eta}\|_{2, \Omega}+\|\xi\|_{2, \Omega}\right)\left(\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{1, \Omega}+\left\|u-u_{h}\right\|_{1, \Omega}\right) \\
& \leqslant C h^{k+1}\left(\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{0, \Omega}+\left\|u-u_{h}\right\|_{0, \Omega}\right)\left(\|\boldsymbol{\sigma}\|_{k+1, \Omega}+\|u\|_{k+1, \Omega}\right) \tag{4.35}
\end{align*}
$$

where we have used (4.3) and (4.12). We get (4.25) from (4.29), (4.35), (4.34) and (4.12).

Let $k+1=r, k>1, \mathbf{F}=\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}$ and $G=0$. Then

$$
\begin{align*}
a\left(\xi-\xi_{I}, \boldsymbol{\eta}-\right. & \left.\boldsymbol{\eta}_{I} ; u-u_{h}, \boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right) \\
\leqslant & C h\left(\|\boldsymbol{\eta}\|_{2, \Omega}+\|\xi\|_{2, \Omega}\right) h^{r}\left(\|\boldsymbol{\sigma}\|_{r+1, \Omega}+\|u\|_{r, \Omega}\right) \\
& +C h^{2}\left(\|\boldsymbol{\eta}\|_{2 \Omega}+\|\xi\|_{3 \Omega}\right) h^{r-1}\left(\|\boldsymbol{\sigma}\|_{, \Omega}+\|u\|_{r, \Omega}\right) \\
\leqslant & C h^{\prime} \quad{ }^{1}\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{0 \Omega}\left(\|\boldsymbol{\sigma}\|_{1+1 \Omega}+\|u\|_{, \Omega}\right) \tag{436}
\end{align*}
$$

and the desired result for $\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{0, \Omega}$ follows from (4.29), (4.36), (4.34) and (4.4). Setting G to be an arbitrary function in V and $\mathbf{F}=\mathbf{0}$ we get the estımate for $\left\|u-u_{h}\right\|_{-1, \Omega}$:

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{-1, \Omega} & =\sup _{G \neq 0} \frac{\left|\left(u-u_{h}, G\right)_{0, \Omega}\right|}{\|G\|_{1, \Omega}} \\
& \leqslant \frac{C h^{r+1}\|G\|_{1, \Omega}\left(\|\boldsymbol{\sigma}\|_{r+1, \Omega}+\|u\|_{r, \Omega}\right)}{\|G\|_{1, \Omega}} \\
& \leqslant C h^{r+1}\left(\|\boldsymbol{\sigma}\|_{r+1, \Omega}+\|u\|_{r, \Omega}\right)
\end{aligned}
$$

where the a priorl estımate (4.15) has been used.

5. CONCLUSIONS

We have presented an analysis of a least-squares mixed finite element method. The difference between the present paper and [18] is that a new boundary condition for $\boldsymbol{\sigma}$ is imposed and a new term is added to the bilinear form. Following this approach we were able to prove optimal L^{2} - and H^{1}-error estımates for the cases $k=r$ and $k+1=r$. The numerical experiments which we recently conducted confirm the theoretical rates of convergence and will be reported in a separate paper. Also, some important issues related to a posteriorı error estımates are currently under consideration.

1

REFERENCES

[1] F. Brezzi, 1974, On the existence, uniqueness and approximation of saddle point problems arısing from Lagrange multıphers, RAIRO, Sér Anal Numér, 8, no R-2, 129-151.
[2] G. F Carey, S. S. Chow and M. R. Seager, 1985, Approximate BoundaryFlux Calculatıons, Comput Methods Appl Mech Engrg, 50, 107-120.
[3] G. F. Carey and J. T. Oden, 1983, Finte Elements A Second Course, vol II, Prentice-Hall, Englewood Cliffs, N J.
[4] G F. Carey and Y. Shen, 1989, Convergence studies of least-squares finite elements for first order systems, Comm Appl Numer Methods, 5, 427-434.
[5] C L Chang, 1990, A least-squares finite element method for the Helmholtz equation, Comput Methods Appl Mech Engrg, 83, 1-7.
[6] T -F CHEN, 1986, On least-squares approxımations to compressible flow problems, Numer Methods Parttal Differential Equatoons, 2, 207-228.
[7] P. G. Ciarlet, 1978, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam
[8] P. G. Ciarlet and P A Raviart, 1972, Interpolation theory over curved elements, with application to finite element methods, Comput Methods Appl Mech Engrg, 1, 217-249.
[9] J. Douglas and J. E. Roberts, 1985, Global estımates for mixed methods for second order elliptic equations, Math Comp , 44, 39-52.
[10] G J. Fix, M. D. Gunzburger and R. A. Nicolaides, 1981, On mixed finite element methods for first order elliptic systems, Numer Math., 37, 29-48
[11] P. Grisvard, 1985, Elliptic Problems in Nonsmooth Domains Pitman. Boston.
[12] J. Haslinger and P. Neittaanmaki, 1984, On different finite element methods for approximating the gradient of the solution to the Helmholtz equation, Comput Methods Appl Mech Engrg, 42, 131-148.
[13] M. Křižek and P. Neittaanmaki, 1984, On the validity of Friedrichs' inequalities, Math Scand, 54, 17-26
[14] L. M. Mehra, 1978, Zur asymptotischen Vertellung der Eigenwerte des Maxwellschen Randwertproblems, Dissertation, Bonn.
[15] P. Neittaanmaki and R. Picard, 1980, Error estımates for the finite element approximation to a Maxwell-type boundary value problem, Numer Functıonal Analysis and Optımızation, 2, 267-285.
[16] P Neittaanmaki and J. Saranen, 1981, On finite element approximation of the gradient for the solution of Poisson equation, Numer Math, 37, 333-337.
[17] P. Neittaanmaki and J. Saranen, 1980, Finite element approximation of electromagnetic fields in three dimensional space, Numer Functional Analysis and Optımızatıon, 2, 487-506.
[18] A 1. Pehlivanov, G. F. Carey and R. D. Lazarov, iy93, Ledst-squares mixed finite elements for second order elliptic problems, SIAM J Numer Anal, to appear.
[19] A. I. Pehlivanov, G. F Carey, R. D. Lazarov and Y. Shen, 1993, Convergence analysis of least-squares mixed finite elements, Computing, 51, 111-123.
[20] P. A. Raviart and J. M. Thomas, 1977, A mixed finite element method for 2nd order elliptic problems, Lect Notes in Math, Springer-Verlag, v 606, 292315.
[21] J. Saranen, 1982, On an inequality of Friedrichs, Math Scand, 51, 310-322.
[22] J. Saranen, 1980, Uber die Approxımation der Losungen der Maxwellschen Randwertaufgabe mit der Methode der finiten Elemente, Applicable Analysis, 10, 15-30.

[^0]: (*) Manuscript received August, 26, 1993
 (${ }^{1}$) ASE/EM Department, WRW 301 The University of Texas at Austin, Austin, TX, 78712, USA

