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MATHEMATICALMODEUJIWANDMUMERICALANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYCC NUMÉRIQUE

(Vol 28, n S, 1994, p 499 à 516)

ERROR ESTIMATES
FOR LEAST-SQUARES MIXED FINITE ELEMENTS (*)

by A. I. PEHLIVANOV O, G. F. CAREY C1)

Commumcated by R GLOWINSKI

Résumé — Une méthode éléments finis mixtes des moindres carrés est formulée, et appliquée
à une classe de problèmes elliptiques du second ordre, pour des domaines bidimensionnels et
tridimensionnels La solution primaire u et le flux <r sont approchés en utilisant des espaces
éléments finis de polynômes par morceaux, de degrés k et r, respectivement La méthode est non
conforme dans la mesure ou Vapproximation du flux ne peut pas être satisfaite sur toute la
frontière F, mais n'est satisfaite qu'aux nœuds de F Des estimations d'erreur optimales dans
les espaces L2 et H1 sont obtenues en faisant V hypothese habituelle de régularité sur la partition
éléments finis (la condition LBB n'est pas requise) Les cas importants où k = r et
k + 1 = r sont examinés

Abstract — A least-squar es mixed finite element method is formulated and applied foi a c lass
of second ofdei elhptic problems in two and three dimensionaï domains The pi imaty solution u
and the flux a are approximated usmg finite element spaces consisting of piecewise polynomials
of de grée k and r respectively The method is nonconforming in the sensé that the boundary
condition for the flux approximation cannot be satisfied exactly on the whole boundary F— so it
is satisfied only at the nodes on F Optimal L2- and H]-error estimâtes are denved under the
standard regulanty assumption on the finite element partition (the UBfè-condition is not
requued) The important cases ofk — i and k + l — r are considered

1. INTRODUCTION

Least-squares mixed finite element methods have become a topic of
mcreasing interest since they lead to symmetrie algebraic Systems and are not
subject to the Ladyzhenskaya, Babuska, Brezzi (LBB) consistency require-
ment. The methods remain, however, relatively little studied compared with
the established mixed methods. There are several open theoretical questions
related to the formulation and convergence properties as well as numerical
behaviour.

(*) Manuscript received August, 26, 1993
C1) ASE/EM Department, WRW 301 The Umversity of Texas at Austin, Austin, TX,

78712, USA
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The main idea can be conveniently introduced by means of the représenta-
tive second-order elliptic boundary-value problem :

- div (A grad u) = f in f2 , (1.1)
u = 0 on I \ (1.2)

where ft c Rn, n = 2, 3, is a bounded domain with boundary T and A is a
positive definite matrix of coefficients. Introducing the flux er = - A grad w,
the problem may be recast as the first order system

(1.3)
(1.4)
(1-5)

The classical mixed method for (L3)-(1.5) is based on the stationary
principle for a saddle-point problem and is subject to the inf-sup condition on
the spaces for u and o- (see Brezzi [1]). This implies certain restrictions on
the polynomial degree k and r for the element bases defining approximations
uh and cr̂  respectively. In a least-squares mixed formulation the problem is to
minimize the L2-norm of the residuals corresponding to (1.3)-(1.4) and is not
subject to the consistency requirement The following estimâtes for the least-
squares mixed method are proved in [18] : for k = r

and for k + 1 = r

These estimâtes are optimal in the corresponding norms but it is highly
désirable to have a optimal estimate for || o- — crA || ^. This is the aim of this
paper. To accomplish this goal we use the fact that curl grad v = 0 to
introducé the équation

curl (A"1 er) = 0

which is added to the first order system. Also, a new boundary condition
nAA~1er = 0is imposed on F, where n is the outward normal to Tand ' V
dénotes the exterior product. This boundary condition cannot be satisfied
exactly by the finite element space — so we satisfy it only at the nodes on the
boundary. In this sense the method is mildly nonconforming at the boundary.
Note that the nonconformity has no négative impact on the stability of the
method — the only boundary condition which is necessary for existence and
uniqueness is (1.2). We prove the following estimâtes : for k = r

0 , / 2 +K-<' / , l l 0 ,^C^ + 1 (1.9)
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and for k + 1 = r

\\»-»H\\0O+\\*-«k\\ïn*Ch'9 < 1 1 0 >

ll«-«*ll ! n+ \\<*-<*h\\oa^Chr+\k>\ ( 1 1 1 )

Note that all above estimâtes are optimal and they depend only on the
regularity of the solution and the Standard regularity assumption on the fmite
element partition — there are no other restrictions on the fmite element mesh
or on the finite element spaces

Some comments conserning several related studies of least-squares
methods are warranted to put the current work m perspective, e g see [5, 6,
10, 12, 16] Fix, Gunzburger and Nicolaides [10] presented a mixed method
based on the Keivin pnnciple Optimal L2-error estimâtes are proved for a
certain class of grids satisfy mg the so-called Gnd Décomposition Property
Unfortunately, the latter is a necessary and sufficient condition for stabihty
and optimal accuracy (see also Chen [6]) Chang [5] has proved an estimate
similar to (1 9) when A is the identity matrix under the assumption that the
boundary condition n A o- = 0 is satisfied exactly on F This condition is
essential for the analysis in [5] But m the present paper we prove that it is not
necessary to satisfy this boundary condition in order to have stabihty (see
also [18]) We need it in order to get better estimâtes and it is sufficient to
satisfy such condition approximately The main tooi in [5] is the gênerai
theory of Agmon, Douglis and Nirenberg for elliptic Systems which does not
reveal entirely the different nature of u and o- It is not clear how to handle the
case k ^ r followmg such approach In the present study we manage to
"separate" the considération of error estimâtes for u and <r Our analysis is
closely related to the analysis of finite element approximations for Maxwell
équations (see Neittaanmaki and Saranen [17], Saranen [22], Neittaanmaki
and Picard [15]) In f act, part of our bihnear form coïncides with the bilmear
form in these studies The special cases corresponding to the Poisson
équation and Helmholtz équation are also considered in Neittaanmaki and
Saranen [16], Hashnger and Neittaanmaki [12] For such spécifie classes of
équations it is possible to define a direct approximation to the flux with
optimal estimâtes However, the same approach does not work for the class
of problems considered here since these involve a coupled System for u
and o-

The paper is organized as follows in section 2 we give the problem
formulation and prove the coercivity of the bihnear form The finite element
formulation is desenbed in section 3 Optimal error estimâtes are derived m
section 4

vol 28 n 5 1994



502 A. I. PEHLIVANOV, G. F. CAREY

2. PROBLEM FORMULATION

Let H be a bounded domain in Rn, n = 2, 3, with smooth boundary F.
Consider the second-order boundary-value problem

- div (A grad u) + c(x) u = ƒ in n , (2.1)
u = 0 on T , (2.2)

where the matrix of coefficients A = (#,_, (*))",/ = i> x E ^> is positive
definite and the coefficients atJ are bounded ; i.e. there exist constants
ax and a2 such that

al£
T£^ZTAC*a2(

T{ . (2.3)

for ail vectors £ e Rn and all x e /3.
The standard notations for Sobolev spaces Hm(f2 ) with norm || - ||m ^ and

seminorms | . \t n, 0 ^ i: =s m, are employed throughout. As usual,
L2(f2) = H°(I2) and let Hm{D)n be the corresponding product space. Also,
we shall use the spaces HS(F) (see Grisvard [11]). Let

V = {v eH\O):v = 0 on F} .

By the Poincaré-Friedrichs inequality

W V K O ^ C F \ V \ I . O f o r a 1 1 VGV' <2'4>

Let

c0 = min ( inf c(x), o | . (2.5)

We make the following assumptions with respect to the coefficients of our
équation : there exist constants a0 and cx such that

|c(x)| ^cx for ail xe n , (2.6)

0 < a 0 ^ ax + c0C
2
F , (2.7)

where C F is the constant from the Poincaré-Friedrichs inequality above.
Hence, the coefficient c (x ) may be négative provided that a x is sufficiently
large.

Now, introducing a new variable cr = - A grad M, <T = (c^, ..., <rfl), we
get the following System of first-order differential équations for u and <r :

cr + A grad w = 0 in fl , (2.8)
div cr + eu = ƒ in fl , (2.9)

u = 0 on T . (2.10)
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Let q = (<?i, , <?„) be a smooth vector function Dénote by curl the
following operator

H ŒR2 curl q = d1q2 - b2qx ,

H c R3 curl q = (d2q3 - d3q2, d3qx - e^ 3 , b1q2 - d2qx)

Also, when 12 cz R2 and u e Hl(I2 ) we dénote curl v = ( - 32i;, 3 ^ )
Smce curl grad u = 0 for smooth v then (2 8) yields

curl A ' 1 er = 0 (2 11)

Let n = (v{ , i/H) be the outwaid normal to the boundary i" We
introducé the exterior product operator

f2 Œ R2 n A q = v x q2 — v2 qx ,

i7 c:/?3 n Aq = (^2<73 - v3q2, v3q} - vx q^ vx q2 - v2q{)

Then, having in mind the boundary condition (2 10), we get
n A grad u — 0 which may be wntten as

n A A ] a = 0 on F (2 12)

Next, introducé the following spaces

W = {q e L2{ü f div q e L2{f2 )} , (2 13)

W = { q e W curl A l q e L2(/2 ƒ , s = 1 for n = 2 ,

^ = 3 for « = 3 , n A A ' q - 0 on r} (2 14)

with norms

Let ( . , . )0 n t>e the standard inner product in L2(f2) or L2(f2)n ,
correspondingly ( . , . )0 r will be the inner product in L2{F)S, s = 1 for
w = 2, s = 3 for n = 3

Now we are ready to formulate the least-squares minimization problem
find u s V, ( T Ë W such that

y(M, cr) = inf J{v, q ) ,
» e V q e W

where

/{>, q ) = (curl A" ! q, curl A" l q)0 ^

+ (div q + cv - ƒ, div q + cv - ƒ )0 /2

+ (q + A grad t>, q + A grad i; )0 n (2 15)

vol 28 n° 5, 1994



504 A I PEHLIVANOV, G F CAREY

The correspondmg variational statement is find u e V, cr e W such that

a (u, <r , v, q ) = (ƒ, div q + cv )0 n for ail v e V , q e W , (2 16)

where

a(u, cr , v9 q ) = â(uy cr , u, q ) + (curlA"1 cr, curlA"1 q)0 n , (2 17)

5(M, O- , u, q ) = (div cr + cM, div q 4- CÎ̂  )O n

+ (<r + A grad //, q + A giad t )0 ri (2 18)

In order to prove existence and uniqueness of the solution of (2 16) we
have to show that the bilmear form <a ( . , . ) is coercive in the space
(V', W ) First, we shall învestigate the coercivity of â(., . ) in the larger
space (V, W)

THEOREM 2 1 T/zer^ ex/5/5 a constant C :> 0

î /2 S n + Hd lv<ïllo „ ) ^ 5 ( i ; , q , . , q ) (2 19)

/ o r üf// v e V, q G W

Proof Let j ö b e a positive constant to be specified later and E dénote the
identity n x n matrix Expanding â(. , . ),

â(v9 q,i>, q )

= [(div q + cv )2 + (q + A grad t> )2] d?x
J n

• i [(div q)2 + 2 ci? div q + (eu)2 + qz + 2 q . A grad i; + (A grad f )z

n

+ 2 £ q . grad i? - 2 ySq . grad v + (c - £ )2 u2 - (c - /3 f v2] dx

Selectively integrating by parts, setting v = 0 on F and regrouping,

â(v9 q , v, q)

[(div q)2 + 2(c - p ) ü div q + (c - p f v2 - (c - £ )2 u2 4- (cvf

+ q2 + 2 q . (A - fiE) grad u + (A grad t>)2] dx

[ ( d i v q + ( c - ^ 8 ) i ; ) 2 + ( 2 y 8 c ^ ^ 2 ) t ; 2

J/2

2+ q2 + 2 q . (A - j3£) grad v + ((A - )8£) grad i?
- ((A - )0£) grad v)2 + (A grad Ü )2] dx
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[(div q + (c - p ) v f + (2 Pc - p 2) v2

n
+ (q + (A - (3E) grad v f + 2 /ÖA grad t;. grad i; - (3 2(grad Ï;)2] Ü?X

5= f [(2 /?c0 - yS 2) u2 + 2 pA grad D . grad v- p 2(grad v)2] dx
J n

s* f [ (2^c o - )S 2 )C 2 +2)Sa 1 - )S 2 ] (g rad i ; ) 2 ^ , (2.20)

where we have used (2.3) and (2.4).

Let p = 5-y . Then by (2.7)

/3(2(c0CF + « 1 ) - / 3 ( 1 + CF)) - — (2(c0CF + a i ) - ûr0)
1 + C f

^ ^ - r ^ O . (2.21)

Using (2.21) in ,(2.20),

a(v9 q ; v, q ) ^ C |grad i; |^ fl > C \\v\\l a . (2.22)

Obviously, from (2.18),

a(v, q;v, q ) ^ || div q + c» || \ n .

Hence,

| |q | | 2
 n * 2 | | q + A grad i>| |£ f l + 2| |A grad i;||gf n

*Ca(p9 qiv.q), (2.23)
| |divq| |2

 / 2 ^ 2 | | d i v q + c i ; | | 2
) i 2 + 2 | | c i ; | | 2

ï / 2

?, q ; ü , q ) . (2.24)

Combining (2.22)-(2.24) we get (2.19). D
From Theorem 2.1 we obtain directly

THEOREM 2.2 : The bilinearform a{. ; . )is coercive in (V, W), i.e. there
exists C > 0 .swc/z

vol. 28, n° 5, 1994
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Remark The înequality (2 25) does not depend on the boundary condition
(2 12) In order to demonstrate existence and umqueness we need only the
boundary condition (2 10) D

THEOREM 2 3 Let ƒ e L2(f2) Then the problem (2 16) has a unique
solution u e V, a e W

Proof Smce a (. , . ) is continuous and coercive, the resuit follows from
the Lax-Milgram lemma •

3 FINITE ELEMENT APPROXIMATION

Next, we define finite element spaces corresponding to V and W Let
TDH be a partition of the domain O into fimte éléments, î e fï = u K and h

be the maximum diameter of the éléments We suppose that the same
partition is used in the définition of approximation spaces for u and <r
although this is not necessary

Let Pk(X\ X <=ƒ?", be the set of polynomials of degree k on X and let
K dénote the master element Suppose that for any K e *Gh there exists a
mappmg FK K -> K, FK(K) = K with components (FK\ e P S(K\ i = 1,

, n As usual, we have the correspondent vh(x) = vh{x\ <\h(
x) =

q^(x) for any x = FK(x), X e K9 and an\ fanctions vnJ qh on k Define the
following approximation spaces (of piecewise polynomials of degree k and r
respectively for Vh and Wh)

Vh={vheC°(n) vh\K = vh\KePk(K) VK e 15, , ^ O o n f } ,

(3 1)

GC°(nr (qh\\K=(qh)l\KePr(k)9

i = l , , n , VK e*Çh, n A A l qh = 0 at the nodes on F } (3 2)

In gênerai, we suppose that 1 =s s =s max {k, r}, where 5 is the degree of
polynomials used in the mappings FK, K e *&h This means that for one of the
variables (u or <y) we may have îsoparametnc éléments, while for the other
variable the éléments may be superparametric (see Carey and Oden [3])

Now, let us comment on the boundary condition Since we can use curved
éléments and we may have a non-constant matrix A then the boundary
condition n A A l cr = 0 on Tcannot be satisfied on the whole boundary We
require this condition to be satisfied only at the nodes on the boundary
Hence W^ <t W and we have a nonconforming fimte element method find

M2 AN Modélisation mathématique et Analyse numérique
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uh e Vh, <rhe Wh such that

a(uh, <rh ; vh, qh) = (ƒ, div q̂  + cvh\ n for all vh e Vh , qh e Wh.

(3.3)

Using (2.8)-(2.11) for the exact solution we get the orthogonality property

a(u-uk9€r-<rk;vhyqh) = Q for all vheVh, qh e Wh . (3.4)

Since the inequality (2.25) does not depend on the boundary condition
(2.12) we have

for all tPA e Vh, qh e WA.
Hence the discrete problem (3.3) has a unique solution. Also, it follows in

the same manner as in [18] that the condition number of the resulting linear
system is O(h~2).

In the cases when 12 is a 2D-polygon (3D-polytope) the tangential
derivative is not uniquely specified at a corner point and, hence, we have
several boundary conditions at the corner points of fï. The value of
ah at some corner point can be determined following an approach similar to
the one developed in [2] for boundary-flux calculations. This issue and other
issues concerning the implementation will be discussed in a forthcoming
paper. Note that in the case of affine éléments and constant matrix A the
boundary condition n A A" l crh = 0 is satished exactly.

4. ERROR ESTIMATES

Let Vj G Vh and qj e Wh be the standard fini te element interpolants of some
function v and some vector function q respectively, i.e. we have
v(x) = Vj(x) and q(x) = qj(x) at any node x (of course, we suppose that v
and q are defined everywhere over Ö). From approximation theory we have
the estimâtes (see Ciarlet [7]),

l l « - « / l l a f l + A | | « - « / l l 1 > f l * C A t + 1 | | « | | t + 1,J1, ( 4 . D

Wo-oAko+^-^W^^Chr^WtrW^^. (4.2)

THEOREM 4.1 : Let k = r. Then

\\u-uh\\uf2+ W(T~'Fh\\miViCml)^Chk(\\u\\k+in+ \ \ < r \ \ k + U Q ) - ( 4 . 3 )

Proof : Using Theorem 2.2, the orthogonality property (3.4) and the
interpolation estimâtes (4.1) and (4.2),

vol 28, n" 5, 1994
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Wh-uj\\]

^ Ca(uh - Uj, €Th-^TI\Uh- Uï9 <Jh-Vj

= Ca(u - uj, <r - <Tj ; u k - uu v h - 0 7 )

Applying again (4.1), (4.2) and the triangle ïnequahty we get (4.3). D
Now we consider the case of different degree polynomials for uh and

THEOREM 4.2 : Let k + 1 - r. Then

l l w - ^ l l o ^ + l k - ^ l l l i i 3 * ^ ( | | « i | | r i f l + | | a | | r + l i f l ) . (4.4)

Proof For any v e V let Sh v e Vh be the following projection :

( A g r a d ( v - S h v ) , A g r a d v h ) Q t Q + ( c ( v - Sh v ) , c v h \ a = 0

for all vh e Vh. (4.5)

From standard finite element theory, we have the estimate

\\v-Shv\\an+h\\v-Shv\\^ fl*CA1 + l | | » | | 1 + 1 „ . (4.6)

Using Theorem 2.2 and the orthogonality property (3.4) in the same
manner as before but with Sh M,

c (K - sh u\\2
hn +11^-^11^^)

^ a (Uh - Sh U, <Jh-<J}\Uh- Sh M, <Th - <Tj)

= a(u - Sh M, <r - €Tj ; uh - Sh M, vh - cr7)

= (div (<r - o-7), div (<r̂  - a;))Oi ^ + (c(u - Sh u), div (<r̂  - az))Oj fl

+ (div (or - <r,\ c (u,, - Sh u)\ a

+ (cu i l / \ ' Ur cTy), curl A~ l (a /? - O7))0 ̂

+ (er - Œ / S A grad (MA - S^ w))Of n - (w - àA w, div Ay (<rft - a ; ))0> n

+ (or - O";, Or ; î - < r ) 0 / 2 ,

where we have used (4.5) and intégration by parts. Hence from (4.2) and
(4.6),

: | | r > f l ) ( K - € r / | | l j / J + \\uh-Shu\\ua). (4.7)
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Now we shall prove that

for all q̂  e Wft. The following estimate can be found in Saranen [22,
Theorem 2.2], see also Neittaanmâki and Saranen [17, Theorem 2.2J :

1 1̂1 o n + l l ^ v *1 U o n + N i l o /2 + l l n A^ q || 1/2 r )

(4.9)

for all q e Hl(O)n. We set q = qh and in order to get (4.8) it remains to
estimate ||n A A~ l qh || . Let K a 12 be any element that has a side (face)

coincident with the boundary F, Le. K n F = e, dim (e) = n - 1. Let
£ be the corresponding master element and ë be the side (face) of
K corresponding to e. As usual, qh(x) = qh(x), x = FK(x), x e i , where
FK is the mapping from k onto K. Similarly, A~l(x) = A~l(x), n(x) =
n(i). Then

"l\\r+ 1, e

and since n A A~X qh = 0 at the nodes on e we get by the Bramble-Hilbert
lemma

||n A A~ J q |̂| ^ Ch~ 1/2(meas (e))m n A Â~ 1 (
r+l

Since the boundary is assumed smooth, we have

Also, from the smoothness of coefficients,

Now, using équivalence of the norms in finite dimensional spaces,

5 - 0

vol. 28, n° 5, 1994
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« C / T 1/2(meas (e))1'2 (h2\qh\Q K + * | q * | u P

«C/i-1/2(meas (e))1/2/î2(meas {K)Tm \\qh\\l

Hence

where 42 ̂  is Lhe set of éléments which have a common side (face) with the
boundary 7". Then (4.10) and (4.9) with q = q̂  imply

Hence, for sufficiently small A, the term C/i [| q̂  || t n is absorbed by
|| qh || n and we get (4.8). The inequality (4.10) explains why the assumption
"/z is sufficiently small" is not very restrictive.

JNow (4.7) becomes

\\uh-Shu\\l i / J + | | «F A - a 7 | | 1 > f l a S CA' ( | | « | | r i O + | |Œ | | r + l i f l ) . (4.11)

Applying the estimate

(4.6), (4.11) and the triangle inequality we get the desired resuit. D

Remark : Obviously, the validity of (4.8) does not depend on k. Hence,
using (4.8) we get (in the case of k = r)

which improves the estimate in Theorem 4.1. •
As an intermediate step toward the final optimal estimâtes, we introducé

the following auxiliary problem : find f e V , ti G W such that

a(f , -n ;» , q ) = (G, v \ n + (F, q)Oï/3 f or ail v e V, q G W , (4.13)

where G G H1 (H ) and F e H1 (Of will be specified later.
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THEöREM 4 3 The folloning a pi ion estimâtes hold

U\\2n+ \\M2a * C ( | | G | | O f l + | | F | | 0 / 2 ) , (4 14)

Uha+Mia * C ( | | G | | l f l + | |F| |O f l) (4 15)

Proof Using the first Friednchs' mequahty (Saranen [21], Krizek,
Neittaanmaki [13]),

C | | q | | i a a S | | c u r l A : q\\Q Q + ||div q ||0 Q + | |q | |0 o (4 16)

Then from Theorem 2 2 and (4 16),

« C«G, i)0 a + (F, T,)0 o)

Hence

llflli o+ Uha*C{\\G\\0a+\\F\\0O) (4 17)

Setting v = 0 in (4 13) we obtain the vanational problem find -YI e W
such that

(curl A l Ti, curM ' q)0 n + (div r\, div q)0 ü + (TQ, q)0 n

- (F - A grad f + grad c£, q)0 n (4 18)

holds tor all q e W We have the regulanty estimate (Mehra [14], cited in
Saranen [22] , Neittaanmaki and Saranen [16])

\\M2n^C I|F - A grad f + grad eg \\Q Q (4 19)

Similarly, letting q = 0 in (4 13) and using intégration by parts we get the
problem find £ e V such that

(A grad £, A grad v )0 n + (e f, cu )0 a - (G + div A1 r\ - c div r\,v)on

(4 20)

for all u e 1/ The following a pt iot i estimâtes lor this problem hold (see e g
Gnsvard [11])

(i) if the domain is convex or the boundary 7" is of class C 1 l

II f ||2 „ ^ C H G + div A rT, - c div T, ||0 a , (4 21)
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(n) if the

Then

I I É Ü 2 / 1 + H'

A I PEHLIVANOV

boundary Fis of class C2 l

U\\3a*C\\G + divAJ

i | | | 2 / î a S C | | G + d i v A r i | -

+ C| |F-Agrad£

*C( | |G | | O i l + | |F | | o

*C( | |G | | O f l + | |F | | o

G F CAREY

\-c<hvn\\lo

cdlVTi\\on

+ grades ||0 a
fl) + C(||f||1 n+ |

«>>

(4

h ü i i , )
(4

22)

23)

where (4 17), (4 19) and (4 21) have been used Similarly, applying (4 17),
(4 19), (4 22) and (4 23),

C ||G + d i v A n cd ivn l^ Q

+ C ||F - A grad f + grad
0

« C ( | | G | | 1 / 2 + | | F | | O f l ) , (4 24)

which is the desired resuit D
Now, we are able to prove the final estimâtes

THEOREM 4 4 If k = r then

! r , + l k - ^ l l O i 3
a S C / i ' + 1 ( | | i i | | r J 2 + | k | | r + l i 3 ) (4 26)

Proof Let us consider the variational problem (4 18) Obviously, iq is a
weak solution of the following problem

— (A l)! curl (curl A ' *n ) - giad div T\ + ri

- h A giad £ + giad c £ in J7

n A A !iq = O on Z1,
div T| = 0 on JT ,

see Saranen [22] Then for p E Hl(f2)n we get

(curl A"1 -n, curl A 1 p)0 n + (div n, div p)0 a + («n, p)0 fl

= (— (A" z ) r curl (curl A~ 1 v\ ) - grad div TJ + t|, p )0 n

+ (curl A""L -Ï|, n A A" ! p)0 r

= (F - A grad f + grad cf, p )0 ̂  + (curl A ! ir|, n A A" ! p)0 r
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Hence

(F, p)o,/2 = f l ( f , •n ïO, p ) - ( c u r l A - S , n A A ^ p ^ (4.27)

for all p e Hl{ü)n. On the other hand, from (4.13) with q = 0,

(G, »)o, ij = a (f, ti ; i?, 0 ) for all veV . (4.28)

Setting p = <T - cr^ and v = u - uhin (4.27) and (4.28) respectively, and
using (3.4) and (2.12)

(F, <T - <rA)Ot ,2 + (G, w - MA)Ot n

= a ( f , t | ; M - MA, a - <rA) - ( c u r l A " 1 ^ n A A " 1 ^ - <**))(>, r

= a(Ç - g f, in - Tl/ ; M - MA, o- - a A )

+ (curl A ~ ' if|, n A A ' ' a / f )0 y , (4.29)

where f ; and Tfi7 are the interpolants of £ and 77.
First, we estimate the boundary term in (4.29). Using the trace theorem

and (4.14),

1 ii, D A A " 1 vk)otr ^ l l c u r l A~ l ^ II0 tJr ||n A A " 1 CTA||O r

(4.30)

In order to estimate || n A A" 1 trh ||Q p the technique from the proof of (4.8)

in Theorem 4.2 will be used. As before, let K c O be an element which has a
side (face) coincident with the boundary F9 K n F = e. Then

||n A A" 1 <FA|| =s C (meas (^))1/2 Y ft' + 1 " s | ô - A | _ .

^ C ( m e a s (e))m l ^ ur+i-*\A

+ V hr+l~s(\&j-&\ . + | Œ | .) . (4.31)

Now, from the équivalence of the norms in finite dimensional spaces,

Y fcr+1-*|âh-â/| ^Ch\&h~&I\n .
Z-( I ft ' 15, e I " 7 10, e

^ Ch (meas (e)Tm ( | a A - a | 0 ^ + |<F — o-, |Q g ) .

(4.32)
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Also,

r

I hr+l
? = 0

Hence

s (

(4.31)-(4

A I PEHLIVANOV, G

ó-l + \&\ )

.33) lead to

5 - 0

^ Chr+]

F CAREY

' ' r, e ' ' s, e

'(meas^))-1'2 M U - (4.33)

^Ch\\ah-a\\ua+Chr + 1\Mr+ua, (4.34)

where the trace theorem has been used. This complètes the estimate for the
boundary term in (4.29).

Now we proceed with the first term in (4.29). Using the Cauchy-Schwarz
inequality,

Considei the case L — / and select G = u — uh and F = <r — trh I hen

^ ^ ^ + 1 ( K - ^ l l o ^ + l l w - ^ l l o ^ ) O I - l l , + i ^ +MI* + l i i î ) . (4-35)

where we have used (4.3) and (4.12). We get (4.25) from (4.29), (4.35),
(4.34) and (4.12).

Let k + 1 = r, k => 1, F = cr - cr^ and G = 0. Then

^ C / i ' 1 | k - c r / / | | o / i ( | | c r | | ^ j n + \\li\\> ü) (4 36)

and the desired resuit for ||<r - <rA||0 fl follows from (4.29), (4.36), (4.34)
and (4.4). Setting G to be an arbitrary function in V and F = 0 we get the
estimate for ||u — uh\\ 1 :
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\u~uh\\-Ua = S U P

where the a priori estimate (4.15) has been used. D

5. CONCLUSIONS

We have presented an analysis of a least-squares mixed finite element
method. The différence between the present paper and [18] is that a new
boundary condition for er is imposed and a new term is added to the bilinear
form. Following this approach we were able to prove optimal L2- and
//]-error estimâtes for the cases k = r and k + 1 = r. The numerical
experiments which we recently conducted confirm the theoretical rates of
convergence and will be reported in a separate paper. Also, some important
issues related to a posteriori error estimâtes are currently under considér-
ation.
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