@article{M2AN_1994__28_4_419_0, author = {Dobson, D. C.}, title = {A variational method for electromagnetic diffraction in biperiodic structures}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {419--439}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {4}, year = {1994}, mrnumber = {1288506}, zbl = {0820.65087}, language = {en}, url = {http://www.numdam.org/item/M2AN_1994__28_4_419_0/} }
TY - JOUR AU - Dobson, D. C. TI - A variational method for electromagnetic diffraction in biperiodic structures JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 419 EP - 439 VL - 28 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1994__28_4_419_0/ LA - en ID - M2AN_1994__28_4_419_0 ER -
%0 Journal Article %A Dobson, D. C. %T A variational method for electromagnetic diffraction in biperiodic structures %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 419-439 %V 28 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1994__28_4_419_0/ %G en %F M2AN_1994__28_4_419_0
Dobson, D. C. A variational method for electromagnetic diffraction in biperiodic structures. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 4, pp. 419-439. http://www.numdam.org/item/M2AN_1994__28_4_419_0/
[1] Electromagnetic waves in an inhomogeneous medium, J, Math. Anal. Appl, 164, 40-58. | MR | Zbl
, , 1992,[2] Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 1 : The continuous problem., Math. of Computation, 167, 29-46. | MR | Zbl
, 1984,[2] Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 2 : The discrete problem, Math. of Computation, 167, 47-68. | MR | Zbl
, 1984,[3] Scattering by stripe grating, J. Math. Anal. Appl., 147, 228-248. | MR | Zbl
, , 1990,[4] Principles of Optics, sixth edition, Pergamon Press, Oxford.
, , 1980,[5] Solution of a boundary value problem for elmholtz equation via variation of the boundary into the complex domain, Proc. Royal Soc. Edinburgh, 122A, 317-340. | MR | Zbl
, , 1992,[6] Numerical solution of diffraction problems : a method of variation of boundaries, J. Opt. Soc. America A, 10, 1168-1175.
, , 1993,[7] Numerical solution of diffraction problems : a method of variation of boundaries II. Dielectric gratings, Padé approximants and singularities ; III. Doubly periodic gratings, preprints. | MR
, ,[8] Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc, 323, 465-507. | MR | Zbl
, , 1991,[9] An integral equation method for biperiodic diffraction structures, in J. Lerner and W. McKinney, ed., International Conference on the Application and Theory of Periodic Structures, Proc. SPIE 1545, 106-113.
, , 1991,[10] The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166, 507-528. | MR | Zbl
, , 1992,[11] Diffusion électromagnétique à basse fréquence par un réseau de cylindres diélectriques : étude numérique, RAIRO, Modél. Math. Anal. Numér. 26, 709-738. | Numdam | MR | Zbl
, , 1992,[12] Mathematics in Industrial Problems, Part 3, Springer-Verlag, Heidelberg. | MR | Zbl
, 1990,[13] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Heidelberg. | MR | Zbl
, , 1977,[14] Perturbation Theory for Linear Operators (corrected second édition), Springer-Verlag, Berlin. | MR | Zbl
, 1980,[15] Integral equation methods in quasi-periodic diffraction problems for the time-harmonic Maxwell's equations, in « Rapport Interne », Vol. 179, C.M.A.P., Ecole Polytechnique, Palaiseau. | Zbl
, , 1988,[16] Electromagnetic Theory of Gratings, 1980, Topics in Current Physics, Vol. 22, edited by R. Petit, Springer-Verlag, Heidelberg. | MR
[17] Pseudodifferential Operators, Princeton University Press, Princeton, N. J. | MR | Zbl
, 1981,