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(Vol 28, n° 4, 1994, p 419 à 439)

A VARIATIONAL METHOD FOR ELECTROMAGNETIC DIFFRACTION
IN BIPERIODIC STRUCTURES (*)

by D. C. DOBSON O

Communicated by R TEMAM

Abstract — Consider a time-harmonie electromagnetic plane wave incident on a bipenodic
structure in U3 The periodic structure séparâtes two régions with constant dielectnc
coefficients The dielectnc coefficient mside the structure is assumed to be a gênerai bounded
measurable function The magnetic permeabihty is constant throughout IR3.

We desenbe a simple variational method for finding weak « quasipenodic » solutions to
Maxwell's équations in such a structure Our formulation is simple and computationally
attractive because it only involves three field components The problem is formulated by
constructing a variational form over a bounded région, with « transparent » boundary
conditions The boundary conditions corne from the Dinchlet-Neumann map s for the problem,
which can be calculated exphcitly We show that the variational problem admits unique
solutions for ail sufficiently small frequenties, and more generally for ail but a discrete set of
frequencies We also show that the weak solutions satisfy a conservation of energy condition
Finally, we briefly discuss an implementation of a three-dimensional numerical finite element
scheme which solves the discretized variational problem, and present the results of a simple
numerical experiment

1. INTRODUCTION.

We consider a time-harmonic electromagnetic plane wave incident on a
gênerai biperiodic structure in IR3. By biperiodic (or doubly periodic), we
mean that the structure is periodic in each of two orthogonal directions. Such
structures are sometimes called crossed diffraction gratings in the opties and
physics literature. The periodic structure séparâtes two régions with constant
dielectric coefficients. Inside the periodic structure, the dielectric coefficient
is allowed to be a gênerai bounded measurable function. The magnetic
permeability is assumed to be constant throughout the whole space.
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420 D. C. DOBSON

This problem is motivated by applications in micro-opties, where micron-
scale optie al diffraction structures are constructed with tooi s from the
semiconductor industry. See the book [12] for a description of this and other
mathematical problems which arise in these applications. For an introduction
to the problem of electromagnetic diffraction through periodic structures
(diffraction gratings), along with some numerical methods, see the in tere s t-
ing collection of articles edited by R. Petit [16]. Related problems have been
recently studied by Nédélec and Starling [15], Bellout and Friedman [3], and
Ducomet and Quang[ll], Numerical methods for the nonperiodic time-
harmonic diffraction problem have also been studied ; see Bendali [2] and
the références therein.

In [10], the existence and uniqueness of solutions to Maxwell's équations
in biperiodic structures, consisting of two homogeneous materials separated
by a piècewise C2 interface, was established by means of an intégral
équation approach. *The work generalized the earlier work of Chen and
Friedman [8] and the approach was later implemented numerically [9].
Bruno and Reitich [5], [6], [7] have developed an elegant and extremely
efficient method for solving diffraction problems in periodic structures,
based on continuing the fields as analytic functions of the height of the
interface.

The method presented hère has the advantage that it is applicable to
extremely gênerai diffraction structures. In particular, the structure is
allowed to be defined by a gênerai bounded measurable dielectric coefficient.
Thus there are no restrictions on the height, topology, or number of materials
present in the interface.

A similar variational approach was recently taken by Abboud and
Nédélec [1] to study Maxwell's équations in a bounded (nonperiodic)
inhomogeneous medium. Our approach differs from [1] in that our variational
formulation involves only the magnetic field vector. The approach of [1]
allows for non-constant magnetic permeability, and is thus more gênerai than
our approach ; however for the optical applications which motivate the
present work, the magnetic permeability is constant. For this case, our
approach is somewhat simpler. Abboud and Nédélec mention in [1] that their
work will be generalized to periodic structures in a fortheoming paper.

The outline of this paper is as follows. In Section 2, we describe the
periodic Maxwell équations. We then dérive in Section 3 a variational form
involving only the magnetic field vector in a bounded région. To complete
the variational formulation of the problem requires a description of the
boundary values of the magnetic field. This is obtained in Section 4 by
explicitly calculating the Dirichlet-to-Neumann map for the problem,
allowing us to formulate « transparent » boundary conditions. In Section 5
we then show that the variational problem has a unique solution for ail
sufficiently small frequencies, and more generally for ail but a discrete set of
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ELECTROMAGNETIC DIFFRACTION 421

frequencies. In Section 6 we show that the weak solutions satisfy a
conservation of energy condition. Finally, we briefly describe a numerical
finite element method based on a discretization of the variational problem
and present some illustrative numerical results.

2. THE PERIODIC MAXWELL EQUATIONS

Let Lj, L2 be positive constants. Define the lattice

A = Lx Z x L2 Z x {0} c IR3 , Z = {0, ± 1, ± 2, ... } .

Let b be another positive constant. Define the following domains :

Do = {x e R3 : - b < x3 < b) ,

D2 = { xe
3 :

where points x e U3 are denoted x = (xl9 x2, x3). See Figure 1.
Let E, H dénote complex vector fields on IR3. The fields E, H will be

called the electric and magnetic fields, respectively. We wish to solve the
time-harmonic (time dependence e~lü)t) Maxwell équations

(1)
(2)

V x E - iwfxH = 0 ,
V x H + icosE = 0 ,

Figure 1. — Location of the three domains Z>0, Dx and D2 relative to one periodic cell. The first
few lattice points n e A are indicated by dots.
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422 D C DOBSON

in IR3 when the magnetic permeabihty JA IS a real constant throughout
R3 and the dielectnc coefficient s is penodic with respect to A

£(x + n ) = e(x), for a l l n e A , x e U3,

and satisfies

f ex in a neighborhood containing D x ,

' £ i n a neighborhood containing D 2 ,

where ^ and £2
 a r e constants with Re (ej), Re ( £ 2 ) > 0 , lm (fj) = 0,

lm O 2 ) =2= 0 Inside Do, s is assumed to be a bounded measurable function
with Re (e)~z a > 0, lm (e ) s= 0 The case lm (e) > 0 accounts for matenals
which absorb energy , see e g [4]

We will assume that a plane wave

is incident on D o from Dj Here p e IR3 is the magnetic polarization vector
and q = {qx, q2, q?,) e IR3 is the incidence vector The electnc polarization

s is given by s = (p x q) The vectors p and # must satisfy the
CO £ j

dispersion relation

q . q = (o2 el /A ,

and the orthogonahty condition

p.q = 0

in order for (£*,ƒƒ*) to satisfy (1), (2) in D{ We also assume that
(E*, ƒƒ*) is an incoming wave, so <y3 <= 0

Let a = (qu q2, 0), and define the vector fields Ea9 Ha by

Ea(x) = e ia xE(x), Ha(x) = e 1<X * H(x)

We are interested in quasipenodic solutions to (1), (2), that is, solutions
such that the fields Ea, Ha are penodic with respect to A The Maxwell
équations (1), (2) in IR3 then become

= 0 , (3)

Va xHa + i<osEa = 0 , (4)

where Va = V + i a
Since all the functions we deal with henceforth are yl-periodic, to avoid

continually referring to the penodic boundary conditions we instead view the
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ELECTROMAGNETIC DIFFRACTION 423

problem as being posed over the quotient space IRJM. We thus define the
new periodic domains

n0 = DÖ/A ,
n1 = DXIA,
n2 = D2IA ,

along with the boundaries

rl = dnl, r 2 = a/22.

Note that iï0 is now a compact set.
For the remainder of the paper we will be studying the system (3), (4) over

the quotient space U3/A. We shall henceforth drop the subscripts a from the
fields Ea and Ha. To get solutions to the original Maxwell équations (1), (2),
our solutions E and H to (3), (4) must be multiplied by eia'x.

3. VARIATIONAL FORM

Taking the Va curl of l/(e^i ) times équation (4), it follows from (3), (4)
that

V, x j ^ - V f f x / / ) -co2H = 0, (5)

Va x H + ia>eE = 0 . (6)

Our goal is to solve (5) for H ; if a solution exists, the field E is then formally
determined by (6). It is easy to check that if H and E are differentiable then
(5), (6) is equivalent to (3), (4). More generally, (5), (6) is equivalent to (3),
(4) in a weak sense.

Remark : We have chosen to study the system (5), (6) rather than the
« dual » system

Va x (Va xE)- o)2 efjiE = 0 ,

- Va x E = 0 ,

because, as can be shown from the weak form of (3), (4), the normal
components of the E field across surfaces of discontinuity in e are
discontinuous (see e.g. [4]). By contrast, the H field is continuous across
jumps in e. Thus, given that we wish to model discontinuous £, the
H field is somewhat more amenable to approximation in simple finite
element spaces. Of course, the situation would be reversed if we were
considering the problem with constant s and variable IA.
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424 D. C. DOBSON

It is easy to check that the operator Va satisfies the usual curl and
divergence identities Va x (Va u) = Va . (Va x F ) = 0. Taking the Va diver-
gence of (5) then reveals that Va . H = 0. Therefore if H satisfies (5), it must
also satisfy

Va x (yVa x H) - Va(yVa .H)-a>2H = 0, (7)

where y = 1/(SJUL). Conversely, if H satisfies (7) along with the constraint
Va . H = 0, then H satisfies (5).

In Section 5, we will show that (7), along with an appropriate « outgoing
wave » condition, admits a unique solution H for all but a discrete set of
frequencies <o. Assuming that (3), (4) also admits a solution (Ë, H)
satisfying trie outgoing wave condition, the two solutions ƒƒ, H must
coincide since H also solves (7). Thus under the a priori assumption of
existence of solutions to the original periodic Maxwell équations (3), (4), it
suffices to solve (7) ; the E field is then determined by (6). We note that the
existence of solutions to the system (3), (4) is proved in [10] for structures
consisting of two homogeneous materials separated by a piecewise
C2 boundary.

The reason for subtracting the term Va(yVa . H) from équation (5) is to
gain a coercive part in the sesquilinear form associated with the weak
formulation ; this will be made clear in Section 5. We now pose the weak
formulation of (7). Let F be a smooth vector field on /20. From (7) we must
have that

f {Va x (yVa xH)} .F -

- f { . v a ( r v a . / / ) } . F - <o2 f H . F = O . (8)

In équation (8), and for the remainder of the paper, bars (F, etc.) dénote
complex-conjugation. Applying Green's formulas and some vector identities
reveals that (8) is equivalent to

J
(yVaxH). (Va x F ) + [ (yVa.H)(V^7F)-co2 [ H. F +

+ f V x {r(Va xH)} .F - f (rVa .//)(F.77) = O, (9)

where rj is the unit outward normal on dü0 = F{ U F2.
We wish to find a field H e Wl(nof on O0 such that (9) holds for ail
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ELECTROMAGNETIC DIFFRACTION 425

F e W](f}0)
3. (Note : throughout the paper, given a domain D, we dénote

the usual L2 Sobolev spaces HS(D) of complex-valued distributions on
D by WS(D\ thus avoiding the notational conflict with the field H.) To
couple the variational problem (9) to the whole space U3/A, we must find a
suitable description of the derivatives of H on Sf2Q, That is the topic of the
next section.

4. TRANSPARENT BOUNDARY CONDITIONS

For each index n = (nu n2, 0) e A, let

( 2 7rrci 2 7rn2 \

Since H is ^1-periodic, we expand in a Fourier series

H(x)= £ / /"(x 3 ) e- '" -* , (10)
ne A

where

tf"<*3) = 7777 C H ( ; C l ' *2' X3) e'""'Ar dx* dx2 '

and Q = [0, Lj] x [0, L2]. For n e /l, and y = 1, 2, define the coefficients

where

ô = a r g ( < o 2
£ j n - \ a n - a \ 2 ) ,

Notice that fS" is real for at most finitely many n ; for the remaining
n G A, fi" has positive imaginary part. We shall assume that /?ƒ ^ 0 for ail
n e A, y' = l ,2 . This assumption excludes at most a discrete set of
parameters (o, /J, from considération.

Since e is constant in Op j = 1, 2, inside these régions équation (7)
reduces to the periodic vector Helmholtz équation

( A a + < o 2
e j j J L ) H = 0 i n n j 9

where Aa=A + 2ia.V— \a\2* It then follows from knowledge of the
fundamental solution to the periodic Helmholtz équation (see [10]) that
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426 D. C. DOBSON

inside Üx and 12 2, all fields H satisfying (7) can be represented as a sum of
plane waves

" k = £ A;*-"""-1""1 , 7 = 1,2 (11)
n S A

where the A* e C 3 are constants. In fact, the dielectric coefficient
e is constant in neighborhoods of the boundaries Fp so the représen-
tation (11) is valid in a neighborhood of 12 y

Notice that only the finite number of plane waves in the sum (11) which
correspond to real coefficients f3ƒ propagate outward. The remaining terms
decay (or grow) exponentially as |x3| -> oo. The exponentially decaying
terms are often called evanescent. We will insist that H is composed of
bounded, outgoing plane waves in f2 x and Z22, plus the incoming incident
wave H* = p e~l l*z in f2 v Thus we implicitly enforce an outgoing wave
condition. Recalling that Fx = {x3 = b}, F2 = {x3 = - b), we obtain from
matching terms in (10) and (11),

Hn(b) e ' X3 ~ , n ^ 0 , in /2 j ,

nn/v \ LJ0SL*\ lP\(x3~b) , ~lP\x3 „ '^1(^3-20) ^ . -^

ri (̂ x3 ) = {ti \u) e + p e — p e , w = u , i n J ^ I ,

//n(— b) e 3 1 in f22 •

(12)
Thus, the fields H in the domains /2 ; have the représentation

(14)

From (12) we calculate the normal derivatives on the boundaries

n =*=(), y = l ,

, n = 0 , y = l , (15)

7 = 2 ,

where e3 is the unit vector in the direction of the *3-axis. It then follows
formally from (10) and (15) that

OU
1 n e yl

i/3ÏH"i-b)e-

(16)

(17)
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ELECTROMAGNETIC DIFFRACTION 427

1 /2(For functions ƒ e VK1/2(r,), define the operators TJ, j = 1, 2 by

Ï T / = ( l 'W,*"1"1"*) ^ (18)

where the Fourier coefficients fn are given by

JQ
\
Q

and equality in (18), (19) is interpreted in the sense of distributions.

LEMMA 4.1 : The operators 7J : WU2(r}) - W~ m(rj) are continuons.

Proof : TJ is an order one pseudodifferential operator (in fact, a
convolution operator). See e.g. [17]. •

We see from (16), (17) that the operators IJ are « Dirichlet to Neumann
maps » for the field H.

Now define the vector-valued operators /?; : Wl/2(Fj)^ W 1 ' 2 ^ ) 3 by

*? ƒ = O?/) ex + (3?/) ^ + (7? ƒ ) e3,

M f ^ W / ) «i + O2V) e2 + (7? ƒ ) e3,

where d" = $} + iap and e} dénotes the unit vector in the x}-direction. If
H s Wl(f20)

3, we see that

(Va x H)\r =Rïx (H\F])- 2 ipx(-p2, Pu 0) e~lP' b ,

where again, equality is in the sense of distributions. The operators
/?" thus map the components of the field H restricted to F} to their derivatives
on Fj.

Substituting the expressions above into the variational form (9) then yields
the équation

vol. 28, n° 4, 1994



428 D. C. DOBSON

f ( r V B x f f ) . ( v B x F ) + - f ( r V a . / / ) ( v 7 7 F ) - ^ 2 I / / . F
J/20 Jï2Q Jn0

+ f

- f ( y K f . / / ) ( F . * 3 ) + f(yKf .H) (F. e3) + \ {yRa
2 .H) (F. e3)

= - f 2i/3ie-
il3<by(p.F), (20)

J r]

where the intégrais over Fj represent the dual pairing of W~l/2(Fj) with
WV2(Fj) and it is understood that the operators RJ act on the traces
of//.

From (20), we define the sesquilinear form /?(//, F ) on

f, F ) = fB(H,F)= (y V a x / / ) . ( V a x F ) -

+ f (rVa.//)(v77F)-c2 f H.
J nQ J n0

f ( r a r,O F f

J A J A

- I (y/?f . H) (F . e3) + f (y/?? . / / ) (F . e3),
JA J A

along with the functional G E [VK'C^O)3]'* defined by

G(F) = - 2//?! e P l y(p.F).
JA

We then pose the variational problem : find H e Vt^/^o)3 such that

£(//, F ) = G(F), for ail

5. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

In this section we establish the existence and uniqueness of solutions to the
variational problem (21). We show in Theorem5.1 that a unique solution
exists for all frequencies 0 < a> < co 0 where <o0 is some positive number
depending on the parameters Ll9 L2, e, JUL, and q. Then in Theorem 5.2 we

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ELECTROMAGNETIC DIFFRACTION 429

show that a unique solution exists for ail positive parameters a> except those
in some discrete set.

THEOREM 5.1 : There exists a frequency a>0>0 such that the variational
problem (21) admits a unique solution H s Wl(f20)

3 for ail frequencies
0 < Ù) =S a> Q.

Proof : For the remainder of the proof, c will dénote a « generic » real
constant whose value may change from line to line.

Let us write the variational form B in (21) as B(H,F) =
BX(H, F ) - Ù>2B2(H, F ) where

( r V a x / / ) . ( V a x f ) + (y V a .
J

a n d

+ | e3x {y(K? xH)} .F - \ e3 x {y(R% x H)} . F

- f (yR?.H){F .e3)+ \ (y*? . H) (F . e3) ,
Jr, Jr2

B2(H,F)= f H.F .
JnQ

Applying some vector identities and integrating by parts in the xx and
x2 directions reveals that

f y \VaxH\2+ f y \Va.H\

y^|a;//,|2 + 2Re (f

where the subscripts on H dénote vector components and rj3 is the
j^-component of the unit outward normal y. With similar manipulations one
can show that

f v x {y(VaxH)}. H- \ (yva . /ƒ)(/ƒ. v)

dn0
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Thus, integrating by parts on the boundary terms and combining we obtain

y(Ta
2H).H. (22)

For; = 1, 2, let Af = {ne A: lm £ƒ = 0} ; define Aj = A ~ Af. The sets
Af are finite and contain the indices of the outward propagating modes. The
sets Aj contain the indices of the exponentially damped modes. Let us
expand the terms involving the operators T* :

= - f y E iP?Hne"a*-x. H- f y £ if3»Hne~ian'x. H.

Since lm (e) =s 0, we can write y = — = y' - iy" where y' > 0,

y " ̂  0. Let us first consider the case where e2 is real. We then have from
(22) that

Re {Bt(H,H)} =

= ff y ' J M d ; / / , j 2
+ r i V l^'l \Hn(b)\2+y2 ^ \t3i\\Hn(~b)\\

v fin - ~

lm

= - f y ^ ( 3 ; / / , | 2 - r i X |/8f| |/

It is easy to check that for <o sufficiently small, there is a constant
c ^ 0 such that

\0?\ **CÙ>(1 4- \n\2)m
f for all « e i , j = 1, 2 .

f , .2 f 9
Furthermore, | 8" / /^ | ^ c 13; / /^ | and hence

I^Cff, /f)| > c / £ 2; |3 ; / / , | 2 + ai ||//||ii/2(ri) + « \\H\\2
wm{r2)\ . (23)

The case where e2 has positive imaginary part is only a little more
complicated. In this case let qn = -iy2Pt and split qn into real and

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ELECTROMAGNETIC DIFFRACTION 431

imaginary parts qn = q'n - /<^\ It is easy to check that q„ >• 0 for all

n e A. Let Â = { « G v l : ^ ^ < 0 } . One can also check that A is a finite set

and for all n e A, we have | ̂  | > | ̂  |. It follows that

We can also check that there is a constant c such that

q'^cwil + \n\2)m , for all « G A , y = 1, 2 ,

and so the bound (23) still holds.
Let U e W1(f20)

2 be a vector-valued function with harmonie components
and Dirichlet data U = H on 8/20. Then (H -U)e W{

0(f20) and by elliptic
estimâtes (e.g. [13]),

Applying the Poincaré inequality and (23) we have

with the last inequality holding for a> sufficiently small. Thus for small
(o, Bx satisfies the coercivity bound

\Bl(ƒƒ,/ƒ)! ^cx <o | |H | |^ i ( i 2 ) . (24)

Let us define the operator Ax : Wv(ftf -> [Wl{£lfY by (AXH,F) =

BAH, F). From (24), we see that A, is invertible with IIA7 x II =s .
11 " Cj û>

Notice also that the operator A2 : ^ ( / ï )3 -• [Wl(O ) 3 ] ' defined by

vol. 28, n° 4, 1994
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(A2H,F) = B2(H, F) is bounded (and in fact, compact). Defining

A = A, — Ù>2A2 and bounding IIA\ l A2\\ =s we then have
Cj O)

1 — a) \AX A 2 1 | cx <o — c2 <o 2

Hence for a> sufficiently small, A" 1 exists. D

THEOREM 5.2 : The variational problem (21) admits a unique solution
H e Wl(f2Q)3 for ail but a discrete set of parameters co > 0.

Proof : Let M = {co : p" = a>2 e. ix - \ an - a | 2 ^ 0 for ail
j K ' j j * i n i r

n e A , / = 1 , 2 } , so M is a discrete set of points. Recall that we excluded
parameters such that co e M in Section 4 when we defined the boundary
operators T".

Note that the sesquilinear form Bx dépends on co through the coefficients
P* defining the operators T". Nevertheless, for any fixed co £ 0$, we can
bound

\P1\ s s c ( l + \n\2)m , for ail n e A , y = 1, 2 ,

and so with the same argument used in Theorem 5.1 we can establish a
bound

so that the associated operator A j is bounded and invertible. To emphasize
that Ax dépends on o>, we write A1(w). The compact operator A2 does not
depend on a>.

Holding a>x $ M fixed, now consider the operator A (w1? <u) = A 1 ( ( y 1 ) -
ct>2A2. By Fredholm theory, we see that A(Ù>X, W)'1 exists for ail
<o ̂  ^(o>i), where ^ ( w ! ) is some discrete set. We will first show that
A(o>, (o)~l exists for <o near <wl9 except possibly for <o e ^ (wj ) , thus
proving the theorem for a> near wp

It is easy to check that

H A ^ W ) - A ^ O H ^ 0 , as (o -+ (o 2 ;

indeed, one need only show that the boundary maps T"{CÙ), T°(<OX)

converge as operators on W1/2(F) and this follows from the définition of the
c o e f f i c i e n t s P". T h u s , s i n c e | |A(o> , o>) — A(<ox, <o)\\ = \\Ax(a)) - Ax(a>x)\\
is small for | co - &> x \ sufficiently small, it follows from the stability of
bounded invertibility (see e.g. [14], Theorem IV-1.16) thatA(o>, a> )" 1 exists
and is bounded for ail co near cox with a> $ l ( w , ) .
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Since a>x can be taken at any point outside ^ , it follows that
A((o, (o)~l exists for all but a discrete set of frequencies (o, •

6. CONSERVATION OF ENERGY

In this section we show that the weak solutions of the variational
problem(21) conserve energy in the sense that the energy radiated away
from Ho is the same as that of the incident wave, provided there is no
material present which absorbs energy (i.e. provided lm (e) = 0).

From the expansion (11) and the représentation (13), we see that the
coefficients of each propagating reflected plane wave are

rn = Hn(b)e~l0lh for n ^ O , n e Af ,

~l^b~pe-2l^b for n = 0 ,

where Af = ( n e A : lm £ " = 0} . The « energy » of each reflected mode
can be defined [16] by /?" \rn\

2//31. (Note : there are many different ways to
define the energy of electromagnetic waves. Our définition is equivalent, up
to a multiplicative constant, to the usual définition involving the Poynting
vector.) Similar to the reflected modes, the coefficients of each propagating
transmitted more are

tm=Hm(-b)e~ll*lb for m e A2
+ ,

where A2 = {m e A : lm /3 ™ = 0} . Note that propagating transmitted modes
only exist when y2 = l/(At e2) is real, for otherwise A% is empty. The energy
of each transmitted mode is similarly defined as

, m e Ai .
T / »

Conservation of energy states that the total energy of the reflected and
transmitted waves must equal the energy of the incident wave ƒƒ*. The
energy of the incident wave is |/?|2, where p is the magnetic polarization
vector. The conservation of energy condition can thus be written

^ ( l ^"\r"\2 + y 1 e ? K \ 2 ) = \P\2•

THEOREM 6.1 : (Conservation of energy). Assume that the coefficients
y, yu and y2 are real. Then the reflection ans transmission coefficients
rn, tm corresponding to solutions H e Wx(üf of (21) satisfy (25).
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Proof : From (21) we see that

, H) = - 2 ^ ! Re {•1*'J>o-">}-
Expanding the operators 7?, T̂  we see that the imaginary part of
i? is given by

- n £ /?n/ I
n e A* m e A%

= - 2 / 3 , r i R e

from which (25) follows immediately. D

Remark: Scaling the incident wave energy to | p | 2 = 1, the numbers
(0? k«|2V0i a n d (r2 021 Um|2)/(yi 0 i ) are often referred to in the opties
and engineering literature as efficiënties. They represent the proportion of
energy radiated in each propagating mode. Given a solution H to prob-
lem(21), the efficiencies can be easily calculated from the Fourier coef-
ficients of the traces H | r .

7. FINITE ELEMENT METHOD AND NUMERICAL EXPERIMENTS

In this section, we briefly describe a finite element method for solving the
variational problem (21). We will not prove any convergence theorems or
make error estimâtes here. Such estimâtes should be facilitated by the fact
that the underlying operator A has a bounded inverse, as established in
Theorems 5.1 and 5.2, although in the case of rough dielectric coefficients,
the lack of regularity may preclude « optimal » global error esimates for
standard schemes. Rather than delve into these issues here, we merely wish
to describe a particular finite element scheme and illustrate qualitatively,
with a simple numerical experiment, the kinds of results one can expect with
such a scheme.

It is very convenient that the domain 120 is a periodic «box». We
discretized f20 with a uniform rectangular grid, say with Nk grid points in
each xk direction, and used the piecewise-trilinear finite element basis with
éléments <f> (x - XJ\ where {XJ} is the set of Nx . N2. Af3 grid points, and

otherwise .
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Hère, hk dénotes the grid spacing in the A>th direction, Le., hx =L1/N1,
h2 = L2/N2, h3 = 2 b/(N3 - 1 ). The basis éléments centered at grid points
which lie on the boundaries Fj are restricted to O0.

The équations were discretized using the standard Galerkin approximation
with a simple gaussian quadrature formula to compute the intégrais over the
cells. The boundary conditions were calculated by truncating the Fourier
transform représentation of the operators TJ.

The resulting linear System is large and sparse, but not necessarily
Hermitian or positive definite. We chose to solve the system with an
« Orthomin » itérative solver. We experimented with several generic precon-
ditioners, for example diagonal scaling and incomplete LU décomposition,
but generally observed quicker convergence without a preconditioner. An
important topic for future research is the design of effective preconditioners
for this problem.

Our numerical experiment is meant to solve a prototypical electromagnetic
scattering problem which could be encountered in micro-optics. We are
given a biperiodic structure such as the one pictured in Figure 2. This
particular structure illustrâtes qualitatively the features of devices we wish to
model.

The goal is to predict the diffracted field which results when a plane wave
of a particular frequency, polarization, and incidence angle impinges on the

X3

- UI Aft

Figure 2. — Cross-section through the center of one periodic cell of the prototypical biperiodic
structure. The profile is the same in both the (xv xj and (x2, x3) cross-sections.
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structure from above. In micro-optical applications, the period of the
structure is usually comparable to the wavelength of the incident radiation.
We have chosen the wavelength of the incoming wave to be 0.55 |xm,
roughly in the center of the visible electromagnetic spectrum. We have taken
the period of the structure to be 0.5 |xm in both the xx and x2-directions. The

1.5

1

Figure 3. — Cross-section of the amplitude | H | , taken through the métal région in the
(*Ü*3) Plane.

2

1.5

1

0.5

10 x3-axis
15

x l - a x i s

Figure 4. — Cross-section of the amplitude | H | , taken through the non-absorbtive région in the
(*!, JT3) plane.
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height of the computational box is also 0.5 jxm. We used a 32 x 32 x 33
grid. The grid line s are aligned with the discontinuities in the dielectric
coefficient e, since this is where we expect discontinuities in the derivatives
of//.

Figures 3 through 6 show cross-sections of the amplitude of the
H field inside the computational box when an incoming plane wave,

2

1.5

1

s— «zr__ *-•—-

Figure 5. — Cross-section of the amplitude \H\, taken through the métal région in the
Ui,*2) plane.

30

10 x 2 - a x i s
15

x l - a x i s

Figure 6. — Cross-section of the amplitude | / / | , taken below the métal région in the
(xvx2) plane.
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polarized such that the E field is pointing in the x2 direction, is incident on the
structure at an angle of 30° with respect to the x3-axis. Perhaps the most
striking feature of the figures is the sharp drop in field intensity inside the
metallic material (which we chose to be gold), compared to the relatively
smooth « waves » in the other media. Notice that the intensity is symmetrie
in the x2-direction, but asymmetrie in the xrdirection ; this is because the
incoming wavevector is orthogonal to the x2-axis.

The primary advantages of this scheme are its generality and simplicity.
Perhaps the biggest disadvantage at present is the large cost associated with
complicated simulations. In gênerai, as the ratio of the wavelength to the size
of the structure decreases, the waves inside the box become more compli-
cated and therefore more difficult to approximate accurately in finite element
spaces. Since we must use a 3-dimensional mesh, the cost of adding more
grid points in each direction is large. As it stands, the method is certainly
feasible for « medium sized » problems (say 20 x 20 x 20 mesh) on the
current génération of werkstations. Hopefully, with improvements in
preconditioners and itérative methods for solving the discretized équations,
the cost can be reduced significantly.
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