@article{M2AN_1992__26_1_23_0, author = {Prautzsch, H.}, title = {On convex {B\'ezier} triangles}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {23--36}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {1}, year = {1992}, mrnumber = {1154998}, zbl = {0748.41016}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_1_23_0/} }
Prautzsch, H. On convex Bézier triangles. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 1, pp. 23-36. http://www.numdam.org/item/M2AN_1992__26_1_23_0/
[1] The convexity of Bernstein polynomials over triangles, J. Approx. Theory 40, (1984), 11-28. | MR | Zbl
and ,[2] A new proof for the convexity of the Bernstein - Bézier surfaces over triangles, Chinese Ann. Math, Ser., B6 (2), (1985), 172-176. | MR | Zbl
and ,[3] Convergence of Bézier triangular nets and a theorem by Pólya, J. Approx. Theory, Vol. 58, N°. 3, (1989), 247-258. | MR | Zbl
and ,[4] A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1, (1984), 1-60. | Zbl
, and ,[5] Subdivision algoritmus for the génération of box simple surfaces, Compt. Aided Geom. Desing 1, (1984), 115-129. | MR | Zbl
and ,[6] Convexity of multivariate Bernstein polynomials and box spline surfaces, Studia Sci. Math. Hungar. 23, (1988), 265-287. | MR | Zbl
and ,[7] Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design, Vol. 3, Number 2, (1986), 83-127. | MR
,[8] Convexity of Bézier nets on triangulations, to appear in Comput. Aided Geom. Design. | MR | Zbl
,[9] On convexity of piecewise polynomial functions on triangulations, Comput. Aided Geom. Design 6, (1989), 181-187. | MR | Zbl
,[10] Convexity of Bézier nets on sub-triangles, Technical Report 04/90, Brunel University, Dept. of Math. and Statistics, March (1990). | MR | Zbl
and ,[11] Convexity of Bernstein Polynomials on the standard triangle, preprint.
and ,[12] Computing surfaces invariant under subdivision, Comput. Aided Geom. Design 4, (1987), 321-328. | MR | Zbl
, ,[13] Unterteilungsalgorithmen für multivariate Splines - Ein geometrischer Zugang, Diss., TU Braunschweig (1983/84). | Zbl
,