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ON CONVEX BEZIER TRIANGLES

by H. PrRauTZSCH ()

Abstract. — Goodman [8] showed that uniform subdivision of triangular Bézier nets preserves
convexity. Here, a very short proof of this fact is given which applies even to box spline surfaces
and degree elevation instead of subdivision.

Secondly, it is shown that every Bézier net of a quadratic convex Bézier triangle can be
subdivided such that the net becomes convex.

Keywords : Convexity, Bernstein polynomials, Bézier triangles, subdivision, degree elevation,
box splines.

Résumé. — Sur les triangles de Bézier convexes. Goodman [8] a montré que la sous-division
uniforme de réseaux de Bézier triangulaires conserve la convexité. Nous donnons ici une preuve
trés courte de cette propriété, preuve qui s’ applique aussi aux surfaces spline tensorielles et a
I’ augmentation du degré.

Deuxiémement, on montre que tout réseau de Bézier d’un triangle de Bézier quadratique et
convexe peut étre sous-divisé de facon a ce que le réseau résultant devienne convexe.

1. INTRODUCTION

Grandine observed that subdivision of triangular Bézier nets does not
always preserve convexity [9]. However, convexity is preserved by uniform
subdivision as Goodman found out recently [8]. We will show that
Goodman’s result is a simple consequence of the fact that subdivision and
differentiation commure.

Before we embark on this topic let us recall the definitions of the terms
already used and yet to come. A denotes some triangle in R? and
dy, d,, d, its vertices. It serves as coordinate frame for the barycentric
coordinates which are used throughout this paper. Thus, a tuple

(g @y, @y), ap+a,+az=1,
represents the point

a()d0+ a1d1+a2d2.
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24 H PRAUTZSCH
It is well-known that every polynomial p of degree < » has a unique n-th

degree Bézier representation over A of the form

n!
@D plapana)= ¥ b (g @ elad)

t+j+k=n
5,7, k=0

This representation is associated with the so-called Bézier net. The Bézier
net is related to a uniform subdivision, i.e., a triangulation, of A generated
by the gridlines

ayg=p/n, a,=pln, a,=pnh wu=0,1,.,n;seefigurel.

A, will denote the set of all subtriangles of A belonging to this triangulation.

d,

Uo

(2/3,0,1/3)

dy u 4

Figure 1. — The uniform subdivision 4; of A.

The n-th Bézier net of p can now be defined as the piecewise linear
function b over A which interpolates the Bézier ordinates b, , , of
p at the abscissas (i,/, k)/n and is linear over all triangles in A,.

The Bézier net is a useful approximation to p, even geometrically. In
particular, it is well-known that p is convex if b is convex, see [1]. However,
the converse is not true in general. This observation becomes interesting as
one can « refine » the Bézier net to an arbitrarily close approximation of
p. This paper investigates certain refinement methods with regard to
convexity. First, in section 3 a short and general proof is given that uniform
refinement methods preserve the convexity of Bézier nets. In section 4 it is
shown that the proof applies even to box spline surfaces. In section 5
iterated uniform refinement is considered and two examples are presented
in section 6. Finally, in section 7 it is shown that the Bézier net of any
convex quadratic polynomial p over A can be refined to a convex Bézier net.
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ON CONVEX BEZIER TRIANGLES 25

2. THE FUNDAMENTAL FACTS

First, we introduce operators to discuss subdivision, degree elevation and
differentiation. These operators are defined on the set of all Bézier nets.
Still, p denotes some bivariate polynomial and b its n-th degree Bézier net
over A.

e The uniform subdivision operator U, is defined such that U, b is a
piecewise linear function over 4 where [U,, b]|,, is the n-th degree
Bézier net of p over A’ for all A’ € 4,,. Note that U,, b is continuous.

e The degree elevation operator E,, is defined by E,, b := (rn + m )-th degree
Bézier net of p.

e The differentiation operator D () is defined by [D (u) 6](x) := (n — 1)-th
degree Bézier net of Ep(x + tu)|, o

The operator D is mainly used in connection with the three directions of the
edges of A4

ug=dyg—d, uy=d —dy u,=d,~d;.
Also, the abbreviation
D;;=D (u;) o D(uj)
is used. For later reference we mention that, c¢f. e.g. [7],
2.B (D)) bY((E, 7, k)(n—1)) =b; j 16 —biyyjk-

An analogous identity holds for D(uy) and D (u,).
The operator D facilitates the test whether 4 is a convex function over
A:

(2.2) LeMMA [1, 10]: b is convex if and only if Dy 1 b=<0, D; , b <0 and
D, ob <0 over A.

Figure 2. — The triangles A and 4%*.
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26 H PRAUTZSCH

Of course, D, , b is only defined for n=2. In case n=0 or 1,5 is
constant or linear and trivially convex.

This Lemma can be generalized to composite Bézier nets. Let A* be a
triangle adjacent to 4 such that /= A N A* is a common edge of 4 and

A*. Without loss of generality u, is assumed to be the direction of I, see
figure 2.

Further, let »* be a Bézier net over 4* of the same degree as b such that
the composite function over 4 U 4*

_Jb(x) if xeAd
by (%) = {b*(x) if xeA*

is continuous. We observe that b, is convex if and only if both 4 and
b* are convex and for some direction u = a,u;+ a,u,# 0, with
a) => 0

(2.3) [D(u)b](x) < [D(u)b*](x), xeI.

(This condition appears in [8] for u being the diagonal of the quadrilateral
AU A% across I)

Besides (2.2) and the uniqueness of the Bézier net there is another
property crucial for the analysis here. Namely, R = U, E preserves positivi-
ty, more general

2.4) minb <min R, b and max R,,b <maxb.

Inequalities (2.4) are due to the fact that the Bézier ordinates interpolated
by R, b lie in the convex hull of all Bézier ordinates b, , ¢, cf.[4, 7].

3. SUBDIVISION AND DEGREE ELEVATION PRESERVE CONVEXITY AND
MONOTONICITY

With the prerequisites of section 2 there is a quick proof of

(3.1) THEOREM : Let b be a convex n-th degree Bézier net. Then
U,, b is convex, for all m e N (See [8] for m = 2").

Proof : If b is linear, U,, b is again linear. Hence, suppose 4 is non linear.
Then by (2.2)

Dy, b<0, D,,b<0, D,4b=<0
and since U preserves negativity, (2.3),
U,Dy,b<0, U,D ,b<0, U,D,,b=<0.
U and D commute because every polynomial has a unique Bézier net. Thus
Dy,U,b<0, D,,U,b=<0, D,,U,b=<0,

i.e., U, b is convex for each A’ € 4,,.
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ON CONVEX BEZIER TRIANGLES 27

Note that D; ; U,, b is to be understood piecewise for each 4’ € 4,,, i.e.,

(Di; Unb)|, = Dij[(Un D), 1.

As mentioned in section 2, D(u) U, b=U, D(u)b is continuous,
u € R? arbitrary. Thus (2.3) holds with equality and implies that U,, b is
convex over its entire domain A. M

This proof works in the same way if U is replaced by E, i.e., degree
elevation, too, preserves convexity. This was first observed by Chang and
Feng [2] who proved this fact without the use of operators.

Moreover, convexity can be replaced by monotonicity in the direction of
some u = a | U] + a,u,. The polynomial p is monotonic in the direction
u if
(3.2) Dw)b=a D(u)b+a,D(uy)b=0.

(Because of (2.1) this condition means that b is increasing over the triangles
in A, parallel to 4 but not necessarily over the other triangles in
4,) Since U and E preserve property (3.2), one has

(3.3) COROLLARY : Let p be a polynomial whose Bézier net b satisfies (3.2).
Then U, b and E, b satisfy (3.2), too. ((3.3) appears in [8] for U,,
m=2")

The proof of (3.1) can also be carried over to composite Bézier nets.
Rewritting (2.3) gives

(3.4 D)[b* —-b](x)=0, forall xeI,

where the notation of section 2 is used. Then an immediate consequence is

(3.5) COROLLARY (see also [8)): If b, is convex, then so also is
R,b,, R="U, E where

[R,b] (x) if xeA

b -
R bud )= V1R 21 () if xea*.

Proof : The convexity of b and b* is preserved under R because of (3.1).
Analogously (3.4) is preserved by R. H

4. BOX SPLINE SURFACES

This section shows that Theorem (3.1) is even valid for box spline
surfaces. Following the notation of [6] we introduce the subset

Xo= {€),..,e,e} of R’
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28 H. PRAUTZSCH
where e; = (8;;); -1, =€, +--- + e, Furthermore,
X= {x, ..., x ,}

refers to a set of not necessarily distinct vectors in Z° and also to the matrix
whose columns are X, ..., x ,. The box spline is defined by the requirement
that

f f(x) B(x|X)dx = f(Xu) du
R* [0,1]

holds for any continuous function f on [R°. For more information confer [5].
A spline function

s(x|X) = z e B(x — a|X)
a € ZS
has similar properties as a polynomial with its Bézier representation :

e The hyperplanes a« +spanV, ae€Z’, V<X, |V|=s5s—1, form a
triangulation of R°® such that Z° forms the set of its vertices. Let
T be this triangulation. The piecewise linear function ¢ which is linear
over all simplices of 7" and which has the interpolatory property

c(a)=c, forall weZ°®
is the so-called control net of s.

e As for Bézier nets we introduce a difference operator D(u) for
u € X, Here, D is defined on the space of all box spline control nets by
the rule

[Dw)ycl(a)=cy,—¢Co_y, a€Z”.
If ue X and s e C!(R®), one has

%s(x—tulX)’tzO: Y [D@)cl (a)B(x—a|X - {u}).

aeZ’
The operator D can be used as in (2.2).

(4.1) LEMMA [6]: Suppose X,c X. Then c(x) is convex if and only if
D) D(w)c=0 for all u, ve X, u+#v.

e Subdividing box splines means to present s(x|X) over the finer grid
hZ°, h~'eN by translates of the scaled box spline B(x|kX), ie.,
subdivision means to produce a control net U(c|X, &) such that
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ON CONVEX BEZIER TRIANGLES 29

s(x) = z U(c|X,h) (a) B(x— a |hX).

aehz®

Note that U has a different meaning in this section.

Let us recall [13, 5] how to generate U(c|X,h) (a), a € hZ’. The
method is best described algorithmically ; here in a slightly different form
than elsewhere :

1. Set d(a):=0 for all @ € KZ°.
2. Set d(a):=h"*c(a) for all @ € Z°.
1o
3. For u=xy,..,x, set U(c|X,h)(a)="h Z c(a —ihu) for all
1=0
aehZ’.
The subdivision operator U and the difference operator D commute in the
following sense :

(4.2) LEMMA : Suppose u€ X. Then one has
UD@w)c|X— {u},h)y=h"'D(hu) U(c| X, h).

The proof is not difficult and omitted.

Lemmata (4.1) and (4.2) and the fact that U preserves positivity establish
the analogy to Theorem (3.1):

(4.3) THEOREM : Suppose that X, c X. If ¢ is a convex box spline control
net, then U(c|X, h) is also convex for all h~'e N.

S. ITERATED REFINEMENT

On returning to the notations of sections 1 through 3 there are two
powerful and intriguing properties :

(5.1) U,, b converges uniformly to p over 4 as m — o0, see, e.g., [12].

(5.2) E,, b converges also uniformly to p over A as m — 0, see, e.g., [3] for a
proof and further references.

With the abbreviations
d
P.(.):= EI’( + zu)lt =0

by, = (pu,)u] s i,j = 0,1,2,

for the directional derivatives one gets

vol. 26, n° 1, 1992



30 H PRAUTZSCH

(5.3) THEOREM : Suppose po; <0, p;,<0, and p; o <0. Then there 1s
some m € N such that for all p =m U, b and E, b are convex. (In [8] this
result is proved for U,, p =2".)

Proof : The definition of D, (5.1) and the assumption of (5.3) imply that
there exists an m € N such that for all & =m

U,D,,b=D,,U,b<0.

i.e., U, b is convex for all u >m. Similarly E, b is convex for sufficiently
large . W

We like to mention that Chang and Feng [2] used that degree elevation
preserves convexity and (5.2) to prove that p is convex whenever
b is convex. This proof is somewhat involved because of (5.2). The original
proof in [1] and other proofs [7, 10] show that the Hessian of p is positive
definite. Here we present yet another and even more elementary proof.

Suppose b is convex, i.e., D, , b =<0, i #j, see (2.2). Thus we get by the
convex hull property, see, e.g., [7], p, , <0 and therefore

pz,zz_pt,] _pz,kaoa {l,],k} = {0’1’2}
Every vector u € R? can be wrntten as

u=a,u, +a,u, i,j€ {0,1,2},

Yz
0, < 0
l
oo, <0 X0, <0
Uo

Figure 3. — A partition of IR%

Thus
2 2
Py =a,p,,+ 2 a,a,p,, +a,p,, ?05
1.e., p i1s convex because u is arbitrary.
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ON CONVEX BEZIER TRIANGLES 31

6. TWO EXAMPLES

Unfortunately, iterated refinement by U,, or E,, does not always provide a
method to obtain a convex approximation of a convex polynomial
p-

Consider, e.g., the quadratic polynomial p whose Bézier net b is given by

boo 2
by bon = -1 0
byo biuo boy 2 0 0.

On using (2.1) and (1.1) one obtains for D; b =p;

Pou=—6, pp=2, py=-6,

which entails by (2.2) and (2.4) that all U,, b and E,, b are non-convex. On
the other hand, p is convex. Namely, every u € R\ {0} can be written as
Uu = alul —+ azuz. Then

2 2 2 2 2
Pw=0aipii+2a,a;p,+a@3pyy=2(aj+az+ (a; +a3))>0.

Similar examples exist even for Bézier curves as is shown in the sequel. We
assume familiarity with Bézier curves and refer, e.g., to [4] for detalils.
Consider the univariate polynomial

g(x)=12+122x-1)*= 1 —-x)*+6x* (1 -x)>+x*, xe [0,1],

whose Bézier polygon is non-convex, see figure 4.

Bezier
polygon

0 1
Figure 4. — The Bézier curve ¢(x).

On the other hand, g(x) is convex since ¢"(x) = 0, see figure 5.

vol. 26, n" 1, 1992



32 H. PRAUTZSCH

241

Figure 5. — The Bézier curve ¢" (x).
Let

g(x) = Z b, (’;‘) Xi(1 = x)* =

i=0

be a degree elevated representation of ¢(x). Then

n-2 , -~ ) 4
q,r(X)=n(n—1) Z Aij(n—'L)xj(l_x)n—Z—]’
=0 J

A% =b;,,~2b;,+b,,

is a degree elevated representation of ¢”(x). In analogy to (2.2) the Bézier
polygon (b;,i/u), i =0,1,..,n is convex if and only if all Azbj = 0.

Since ¢”(1/2) =0 and because of the convex hull property some
Azbj must be non-positive. Moreover, degree elevation is a corner cutting
procedure, i.e., in order to « degree elevate » a Bézier polygon one has to
cut all of its corners. As a consequence, some Azbj must even be negative.
Otherwise further degree elevation would yield strictly positive Bézier
ordinates. Hence, the Bézier polygon (b, i/n), i =0,...,n, cannot be
convex.

Similar examples can be given with subdivision instead of degree
elevation. Obviously, the Bézier polygon of a convex polynomial stays non-
convex under degree elevation or subdivision only if p” has a zero in (0, 1).
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ON CONVEX BEZIER TRIANGLES 33

7. CONSTRUCTING A CONVEX BEZIER NET FOR A CONVEX QUADRATIC

In this section p denotes a convex quadratic, i.e., we may assume without
loss of generality

(7.1 O<pp=pusprn

Then, because of

(7.2) Po=Pu+2pn+prPn
and Pii=Po+2Pn+Pn
one has

(7.3) Pi2=<0 and pyp=0,

Figure 6 shows this situation. There p(dy) = po(dy) = p1(dy) =0 is
assumed, but this does not mean a loss of generality since only second
derivatives matter here.

do

Figure 6. — A cunvex quadratic with a non-convex Bézier net.

As was shown, the Bézier net b of p and all nets U,, b, m e N, are not
convex if pg; > 0. Nevertheless, one can subdivide b such that a convex
composite Bézier net is obtained for p over A.

So, suppose p,; = 0. As a consequence

(74) Pp< 0 and Po< 0

since otherwise one could slightly perturb 4 into a new triangle 4* such that
«pp=>0» (or «pg =>0» respectively) and still have «py; >0» which
contradicts (7.3).

On introducing the notation B(p|T) for the Bézier net of p with respect
to the triangle T and (ry, ..,r,) for the convex hull of the points
15 ..es I' ,, ONE has
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34 H. PRAUTZSCH

(7.5) THEOREM : There is a unique point ce€ (d,d,) such that
B(p|{dy, dy c)) and B(p|{dy, d,,c)) are convex, see figure.

d, !

Figure 7. — b after the subdivision along [c, d].

Proof : For better readibility we introduce the notation
Dw)p=p,-

Note that the operator D is now used in two different contexts, for Bézier
nets and also for polynomials. Then let

SA) =D (uy) D(uy+ Auy) p = poyy + Apy, 1€,
f(0)=pyn<0 and f(1)=-py=0.

Hence, the linear function f(A) has a zero A in (0, 1) which corresponds
to the point ¢ = d; + Ay u,. For the triangle (d,, dy, ¢) one gets p,; <0,
D(u;) D(c—dy)p=0. Which implies by the contraposition of (7.4)
D (ug) D(c —dy) p=<0. Thus B(p|(dy, dy, c)) is convex and similarly is
B(p|(dp, dy,c)). W

We will call the Bézier net b over A strictly convex if the strict inequalities

D01b<0, D12b<0, D02b<0

hold. For example, the two Bézier nets produced in Theorem (7.5) are not
strictly convex. Hence, it might be impossible to conclude numerically that
these two nets are convex. Fortunately, one can overcome this difficulty.
First we observe from (7.5) by some continuity arguements.

(7.6) COROLLARY : Suppose D(c — dy) D(c — dy) p = 0. Then there exists a
¢' € (¢, dy) such that for all d € (c,c') the net B(p|(d, d, d,)) is convex.
(The net B(p|{d, d,,d,)) is not convex.)

One can continue subdividing B(p|(d, dy, d,)) as indicated by (7.6)
thereby producing more and more strictly convex Bézier nets for
p over a region which will fill out A in the limit.
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ON CONVEX BEZIER TRIANGLES 35

Figure 8 depicts the triangulation of A associated with such an iterated
subdivision. The triangulation shown in figure 8 is quite simple to compute
because the edges (dyd,), (d,d" ), {d",d"), ... are all parallel and also
the edges (dyd), (d',d"), ...

d,

d

0 d’ dm

Figure 8. — A subdivision of A produced by iterated applications of (7.6).

The following theorem verifies that one can always choose such a simple
triangulation.

(7.7) THEOREM : Let de (d,d,), v=dy—d, and p such that
B(p|{dy, d, d5)) is strictly convex, i.e., D(ug) D(—v)p, D(—v) D(u,)p,
and py , < 0. Also, let py >0 and p, , <O0. If d', d", ... are as in figure 8,
then B(p|{dy, d,d' }) is also strictly convex.

Because of parallelism all mnets B(p|{(d™,d™+1,dm+2y),
meNU {0}, d=d?, are also convex.

Proof : The three relevant derivatives are, cf. (2.2):

(i) D(v) D () p which is negative : Since D(u,) D(v) p >0 and p; , <0
by assumption, one can use (7.4) with respect to {(dy, d,, d) and gets
D) D(u)p <0.

() D(uy) D(—up)p=—po,1<0.
(iii) D(—uy) D) p=D(uy) D(—v) p<0. N

vol. 26, n° 1, 1992
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