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ON CONVEX BÉZIER TRIANGLES

by H. PRAUTZSCH O

Abstract. — Goodman [8] showed that uniform subdivision of triangular Bézier nets preserves
convexity. Hère, a very short proofofthis f act is given which applies even to box spline surfaces
and degree élévation instead of subdivision.

Secondiy, it is shown that every Bézier net of a quadratic convex Bézier triangle can be
subdivided such that the net becomes convex.

Keywords : Convexity, Bernstein polynomials, Bézier triangles, subdivision, degree élévation,
box splines.

Résumé. — Sur les triangles de Bézier convexes. Goodman [8] a montré que la sous-division
uniforme de réseaux de Bézier triangulaires conserve la convexité. Nous donnons ici une preuve
très courte de cette propriété, preuve qui s'applique aussi aux surfaces spline tensorielles et à
l'augmentation du degré.

Deuxièmement, on montre que tout réseau de Bézier d'un triangle de Bézier quadratique et
convexe peut être sous-divisé de façon à ce que le réseau résultant devienne convexe.

1. INTRODUCTION

Grandine observée! that subdivision of triangular Bézier nets does not
always preserve convexity [9]. However, convexity is preserved by uniform
subdivision as Goodman found out recently [8]. We will show that
Goodman's resuit is a simple conséquence of the fact that subdivision and
differentiation commute.

Before we embark on this topic let us recall the définitions of the terms
already used and yet to corne. A dénotes some triangle in M2 and
d0, du d2 its vertices. It serves as coordinate frame for the barycentric
coordinates which are used throughout this paper. Thus, a tuple

( a Q 9 a u a 2 ) , û o + a i + a 2 = 1 >

represents the point

a0 d0 + ax dx 4- a2d2 .
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24 H PRAUTZSCH

It is well-known that every polynomial p of degree === n has a unique a-th
degree Bézier représentation over A of the form

i ,7 , Jt 5=0

This représentation is associated with the so-called Bézier net. The Bézier
net is related to a uniform subdivision, Le., a triangulation, of A generated
by the gridlines

a0 = fi/n, a x = /x/n, a 2 = /x/rc, M = 0, 1, ..., n ; see figure 1 .

An will dénote the set of ail subtriangles of A belonging to this triangulation.

d2

(2/3,0,1/3)

Figure 1. — The uniform subdivision A3 of A.

The n-th Bézier net of p can now be defined as the piecewise linear
function b over A which interpolâtes the Bézier ordinates bhjk of
p at the abscissas (ij, k)/n and is linear over all triangles in An.

The Bézier net is a useful approximation to p, even geometrically. In
particular, it is well-known that^ is convex if b is convex, see [1]. Ho wever,
the converse is not true in gênerai. This observation becomes interesting as
one can « refine » the Bézier net to an arbitrarily close approximation of
p. This paper investigates certain reflnement methods with regard to
convexity. First, in section 3 a short and gênerai proof is given that uniform
refinement methods preserve the convexity of Bézier nets. In section 4 it is
shown that the proof applies even to box spline surfaces. In section 5
iterated uniform refinement is considered and two examples are presented
in section 6. Finally, in section 7 it is shown that the Bézier net of any
convex quadratic polynomial p over A can be refined to a convex Bézier net.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



ON CONVEX BEZIER TRIANGLES 25

2. THE FUNDAMENTAL FACTS

First, we introducé operators to discuss subdivision, degree élévation and
differentiation. These operators are defîned on the set of all Bézier nets.
Still, p dénotes some bivariate polynomial and b its w-th degree Bézier net
over A.

• The uniform subdivision operator Um is defîned such that Um b is a
piecewise linear function over A where [C/m6]|4/, is the n-th degree
Bézier net of p over A' for ail A' e Am. Note that Um b is continuous.

• The degree élévation operator Em is defîned by Emb := (n + m )-th degree
Bézier net of p.

• The differentiation operator D(u) is defîned by [D(u) b] (x) := (n — 1 )-th

degree Bézier net of —-p (x 4- tu) \ t = 0.

The operator D is mainly used in connection with the three directions of the
edges of A

UQ := d.Q — d-23 U i '>= d\ — CIQ, M 2 : = ̂ 2 ~~ d\ *

Also, the abbreviation

Dtjt-DiuJoDiuj)

is used. For later référence we mention that, cf. e.g. [7],

(2.10 [ D ( u l ) b ] « i J 9 k ) K n - l ) ) = b i J + l 9 k - b i + lj9k.

An analogous identity holds for D(u0) and D(u2).

The operator D facilitâtes the test whether b is a convex function over
A:

(2.2) LEMMA [1, 10] : b is convex if and only if Do x b === 0, Dx 2 b =ë 0 and
D2 0 b ss 0 over A.

A*

Figure 2. — The triangles A and

vol. 26, n° 1, 1992



26 H PRAUTZSCH

Of course, Dz} b is only defîned for n ̂  2. In case n — 0 or 1, b is
constant or linear and trivially convex.

This Lemma can be generalized to composite Bézier nets. Let A* be a
triangle adjacent to A such that A= A n A* is a common edge of A and
,d*. Without loss of generality u2 is assumed to be the direction of F, see
figure 2.

Further, let b* be a Bézier net over A* of the same degree as b such that
the composite fonction over A U A*

^ i f x e Ab (x) lô u W " U * W if
is continuous. We observe that bu is convex if and only if both b and
&* are convex and for some direction u = a lul-\- a2u2^ 0, with

(2.3) [D(u)b](x)^[D(u)b*](x), xeF.

(This condition appears in [8] for u being the diagonal of the quadrilatéral
A U A* across F.)

Besides (2.2) and the uniqueness of the Bézier net there is another
property crucial for the analysis hère. Namely, R = U, E preserves positivi-
ty, more gênerai

(2.4) min b === min Rm b and max Rmb =s max b .

Inequalities (2.4) are due to the fact that the Bézier ordinates interpolated
by Rm b lie in the convex huil of all Bézier ordinates blJ>k, cf. [4, 7].

3. SUBDIVISION AND DEGREE ELEVATION PRESERVE CONVEXITY AND
MONOTONICITY

With the prerequisites of section 2 there is a quick proof of

(3.1) THEOREM : Let b be a convex n-th degree Bézier net, Then
Um b is convex, for all meN (See [8] for m = 2V).

Proof : If b is linear, Um b is again linear. Hence, suppose b is non linear.
Then by (2.2)

and since U preserves negativity, (2.3),

UmDiXb**0, UmDh2b^03 UmD2,0b^0.

U and D commute because every polynomial has a unique Bézier net. Thus

D0tlUmb^03 Dlt2Umb*0, D2i0Umb^O,

i.e., Um b is convex for each A' e Am.
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ON CONVEX BEZIER TRIANGLES 27

Note that Dt-j Um b is to be understood piecewise for each A' e Am, i.e.,

As mentioned in section 2, D(u) Umb = UmD(u) b is continuous,
weR 2 arbitrary. Thus (2.3) holds with equality and impiies that Um b is
convex over its entire domain A, •

This proof works in the same way if U is replaced by E9 i.e., degree
élévation, too, preserves convexity. This was first observed by Chang and
Feng [2] who proved this fact without the use of operators.

Moreover, convexity can be replaced by monotonicity in the direction of
some u = alul -h a2u2. The polynomial p is monotonie in the direction
u if

(3.2) D(u)b = axD{ux)b+ a2D(u2)b^0.

(Because of (2.1) this condition means that b is increasing over the triangles
in An parallel to A but not necessarily over the other triangles in
An.) Since U and E preserve property (3.2), one has

(3.3) COROLLARY : Let p be a polynomial whose Bézier net b satisfies (3.2).
Then Umb and Emb satisfy (3.2), too. ((3.3) appears in [8] for Um,
m = 2\)

The proof of (3.1) can also be carried over to composite Bézier nets.
Rewritting (2.3) gives

(3.4) D(u)[b* - Z> ] (JC) s* 0 , for all xeT ,

where the notation of section 2 is used. Then an immédiate conséquence is

(3.5) COROLLARY (see also [8]) : If bu is convex, then so also is
Rm bu, R= U, E where

\[Rmb] (x) if xeA
[Rmbu] (x):=

[Rmb*] (x) if xeA*.

Proof: The convexity of b and Z>* is preserved under R because of (3.1).
Analogously (3.4) is preserved by R. •

4. BOX SPLINE SURFACES

This section shows that Theorem(3.1) is even valid for box spline
surfaces. Following the notation of [6] we introducé the subset

X o : = {eu ...,e S9e} o f Rs
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28 H. PRAUTZSCH

where et := (ôy )j = i, e := ex -\ h es. Furthermore,

X.= {xl9 ...,*„}

refers to a set of not necessarily distinct vectors in Z5 and also to the matrix
whose columns are xls ..., x n. The box spline is defined by the requirement
that

f f(x)B(x\X)dx= f f(Xu)du
JRS J [0, 1 ]

holds for any continuous function ƒ on Rs. For more information confer [5].
A spline function

s(x\X) = £ caB(x-a\X)
aels

has similar properties as a polynomial with its Bézier représentation :

• The hyperplanes a + span F, a e Z\ Va XQ, \V\ = s — 1, form a
triangulation of W such that Z.s forms the set of its vertices. Let
T be this triangulation. The piecewise linear function c which is linear
over all simplices of T and which has the interpolatory property

c(a) = ca for ail

is the so-called controi net of s.
• As for Bézier nets we introducé a différence operator D(u) for

u e Xo. Hère, D is defïned on the space of all box spline controi nets by
the rule

[ D ( u ) c ] ( a ) = c a - c a _ u i a e Z s .

If u e X and s e C^R*), one has

l L ^ o = £ [D(u)c] (a)B{x~a\X- {u}).

a E Z 5

The operator D can be used as in (2.2).

(4.1) LEMMA [6] : Suppose Xocz X. Then c(x) is convex if and only if
D{u) D(v)c^0 for ail u, v e X0, uj= v.

• Subdividing box splines means to present s(x\X) over the flner grid
hl,s, h~xsN by translates of the scaled box spline B(x\hX), i.e.,
subdivision means to produce a controi net U(c\X,h) such that
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ON CONVEX BEZIER TRIANGLES 29

S(x)= £ U(c\X,h)(a)B(x-a\hX) .
aehZs

Note that U has a different meaning in this section.
Let us recall (13, 5] how to generate U(c\X^h ) (a), a e hZ\ The

method is best described algorithmically ; hère in a slightly different form
than elsewhere :

1. Set d(a) := 0 for ail a e hZs.
2. Set d(a):=h~sc(a) for ail a eZs.

3. For u = xh...,xn set U(c\X, h ) (a) := h £ c(a-ihu) for ail

The subdivision operator C/ and the différence operator D commute in the
following sensé :

(4.2) LEMMA : Suppose u e X. Then one has

U(D(u)c\X- {u},h) = h~lD(hu)U(c\X,h) .

The proof is not difficult and omitted.
Lemmata (4.1) and (4.2) and the fact that U preserves positivity establish

the analogy to Theorem (3.1) :

(4.3) THEOREM : Suppose that Xo a X. If c is a convex box spline control
net, then U(c\X, h ) is also convex for ail h~ 1 G N.

5. ITERATED REFÏNEMENT

On returning to the notations of sections 1 through 3 there are two
powerful and intriguing properties :

(5.1) Um b converges uniformly to p over A as m -> oo, see, e.g., [12].

(5.2) Em b converges also uniformly to p over û as m -• 0, see, e.g., [3] for a
proof and further références.

With the abbreviations

Pi,j -•= (Pu)ur ij = 0 , 1 , 2 ,

for the directional derivatives one gets
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30 H PRAUTZSCH

(5.3) THEOREM : Suppose p0 x < 0, pX2 < 0> and p2i$ < 0. Then there is
some meN such that f or ail \x >m U^b and E^ b are convex. {In [8] this
resuit is proved for U^, fx = 2V.)

Proof: The définition of D, (5.1) and the assumption of (5.3) imply that
there exists a n w e N such that for ail ix > m

i.e., Up b is convex for ail JX > m. Simiîarly E^ b is convex for sufficiently
large JUL. •

We like to mention that Chang and Feng [2] used that degree élévation
preserves convexity and (5.2) to prove that p is convex whenever
b is convex. This proof is somewhat involved because of (5.2). The original
proof in [1] and other proof s [1, 10] show that the Hessian of p is positive
definite. Here we present yet another and even more elementary proof.

Suppose b is convex, i.e., Dt} b =s 0, i =£j, see (2.2). Thus we get by the
convex huil property, see, e.g., [7], pU] ^ 0 and therefore

/>«,. = -PUJ -ƒ>!.*><>, {i,j,k} = {0, 1,2} .

Every vector « e R 2 can be wntten as

M = <*,!*, + txjidj , ij e {0 ,1 ,2} ,

where a ^ ^ O , see figure 3.

"o

Figure 3. — A partition of R2 .

Thus

Puu = <* z 2Pi, i+2<Xi<Xj Pi,j + <xjPj,j ^ 0 ,

i.e., p is convex because u is arbitrary.
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ON CONVEX BEZIER TRIANGLES 31

6. TWO EXAMPLES

Unfortunateîy, iterated refinement by Um or Em does not always provide a
method to obtain a convex approximation of a convex polynomial
P-

Consider, e.g., the quadratic polynomial p whose Bézier net b is given by

^002 2

* i o i ^ o i i = - 1 0

^ 2 0 0 * 1 1 0 ^ 0 2 0 2 0 0 .

On using (2.1) and (1.1) one obtains for Dtj b = p tj

Poi = ~ 6 y P 12 = 2 > Z7 20 = ~ 6 '

which entails by (2.2) and (2.4) that ail Um b and ism b are non-convex. On
the other hand, p is convex. Namely, every u e IR2\ {0} can be written as
u = a x ux + a 2 u2- Then

Puu = a2)2)

Similar examples exist even for Bézier curves as is shown in the sequel. We
assume familiarity with Bézier curves and refer, e.g., to [4] for details.
Consider the univariate polynomial

q(x) = 1/2+ 1/2(2 x - 1)4= (1 - x ) 4 + 6x2(l -

whose Bézier polygon is non-convex, see figure 4.

, x e [0, 1] ,

0 1

Figure 4. — The Bézier curve q(x).

On the other hand, q{x) is convex since qn(x) ^ 0, see figure 5.

vol. 26, n6 1, 1992



32 H. PRAUTZSCH

- 2 4 - -

Figure 5. — The Bézier curve qn (x).

Let

be a degree elevated représentation of q(x). Then

q"{x) =n{n~\)YJ A2bjj ( n ~ 2 \ xj(l -

is a degree elevated représentation of q"(x). In analogy to (2.2) the Bézier
polygon (bt, i/u), i = 0, 1, ..., n is convex if and only if ail A2bj s= 0.

Since #"(1/2) == 0 and because of the convex huil property some
A2bj must be non-positive. Moreover, degree élévation is a corner cutting
procedure, i.e., in order to « degree elevate » a Bézier polygon one has to
eut all of its corners. As a conséquence, some A2bj must even be négative.
Otherwise further degree élévation would yield strictly positive Bézier
ordinates. Hence, the Bézier polygon (bhi/n), i = 0, ...,«, cannot be
convex.

Similar examples can be given with subdivision instead of degree
élévation. Obviously, the Bézier polygon of a convex polynomial stays non-
convex under degree élévation or subdivision only if p" has a zero in (0, 1).
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ON CONVEX BEZIER TRIANGLES 33

7. CONSTRUCTEVG A CONVEX BÉZIER NET FOR A CONVEX QUADRATIC

In this section p dénotes a convex quadratic, Le., we may assume without
loss of generality

(7.1)

Then, because of

(7.2) p00 =

and pn = p00 + 2p02

one has

(7.3) ^12^° a n d

Figure 6 shows this situation. There p(dQ) = Po(do) = P\(dQ) = 0 is
assumed, but this does not mean a loss of generality since only second
derivatives matter here.

Figure u. — A convex quadratic wiih a non-convex uézier net.

As was shown, the Bézier net b of p and ail nets Um b, w e N , are not
convex if p0l > 0. Nevertheless, one can subdivide b such that a convex
composite Bézier net is obtained for p over A.

So, suppose p0l > 0. As a conséquence

(7.4) pn < 0 and p 02 < 0

since otherwise one could slightly perturb A into a new triangle A * such that
< < / J 1 2 > 0 » (or «^02=>0» respectively) and still have « /» 0 i >0» which
contradicts (7,3).

On introducing the notation B(p \ T) for the Bézier net of p with respect
to the triangle T and (rl9 ..., r m) for the convex huil of the points
rh ...,r m one has
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34 H. PRAUTZSCH

(7.5) THEOREM : There îs a unique point c e (du d2) such that
B(p | (d0, d2, c ) ) and B(p | (d0, dh c)) are convex, see figure 7.

Figure 7. — b after the subdivision along [c, dQ].

Proof: For better readibility we introducé the notation

D(u)p:=pu.

Note that the operator D is now used in two différent contexts, for Bézier
nets and also for polynomials. Then let

/ ( A ) = D(u2)D(ul + \u2)p =/>21 + A/722, i.e.,

^ 2 1 < 0 and / ( 1 ) =

Hence, the linear function ƒ (A ) has a zero Ao in (0, 1) which corresponds
to the point c = dx + Ao w2. For the triangle <^2, Jo , c) one gets />20 ̂  0,
D(Î42) D(c — <JQ)P = Q. Which implies by the contraposition of (7.4)
D(uQ) D(c — d0) p =s 0. Thus B(p | (d2, d0, c)) is convex and similarly is
B(p\(do,dl9c)). M

We will call the Bézier net b over A strictly convex if the strict inequalities

D0l b < 0 , D n b < 0 , D02b^0

hold. For example, the two Bézier nets produced in Theorem (7.5) are not
strictly convex. Hence, it might be impossible to conclude numerically that
these two nets are convex. Fortunately, one can overcome this difficulty.
First we observe from (7.5) by some continuity arguements.

(7.6) COROLLARY : Suppose D(c - dQ) D{c - d0) p => 0. Then there exists a
c' e (c, dx) such that for ail d e (c, d ) the net B(p | (d, d0, d2) ) is convex,
(The net B(p | (d, du d0) ) is not convex,)

One can continue subdividing B(p\(d9dQ9dx)) as indicated by (7.6)
thereby producing more and more strictly convex Bézier nets for
p over a région which will fill out A in the limit.
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ON CONVEX BEZIER TRIANGLES 35

Figure 8 depicts the triangulation of A associated with such an iterated
subdivision. The triangulation shown in figure 8 is quite simple to compute
because the edges (d0 d2), (d, d' ) , (d'\ d'" ) , ... are all parallel and also
theedges (dod), (d',d" >,....

d"

d'"

Figure 8. — A subdivision of A produced by iterated applications of (7.6).

The following theorem vérifies that one can always choose such a simple
triangulation.

(7.7) THEOREM : Let de (dud2), v-.= do-d, and p such that
B{p | <J0, d, d2) ) is strictly convex, i.e., £>(w0)

 D(~ V)P* Di~ v) D{u2)p,
and pQ 2 < 0. Also, iet pöl => 0 and px 2 < 0. If d', d", ... are as in figure 8,
ihen B(p\ (d0, d, d' ) ) is also strictly convpx.

Because of parallelism ail nets B(p \ (d{m\ d(m + l \ d(w + 2)> ),
m G N U {0}? d =t <i(0\ are also convex.

Proof: The three relevant derivatives are, cf. (2.2) :

(i) D(v) D(u\) p which is négative : Since D (u2) D (v) p r> 0 and p\r 2 < 0
by assumption, one can use (7.4) with respect to (d0, du d) and gets

(ii)
(iii) D(-uQ)D(v)p =D(uQ)D(-v)p^0.
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