@article{M2AN_1992__26_1_1_0, author = {Hoschek, J. and Seemann, G.}, title = {Spherical splines}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1--22}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {1}, year = {1992}, mrnumber = {1154997}, zbl = {0755.41011}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_1_1_0/} }
Hoschek, J.; Seemann, G. Spherical splines. ESAIM: Modélisation mathématique et analyse numérique, Topics in computer aided geometric design , Tome 26 (1992) no. 1, pp. 1-22. http://www.numdam.org/item/M2AN_1992__26_1_1_0/
[1] Curves and surfaces for Computer Aided Geometrie Design (sec. ed.) Academic Press, 1990. | MR | Zbl
,[2] Pythagorean hodographs. Submitted to IBM, J. Res. Develop., 1990. | MR
, ,[3] Intrinsic parametrization for approximation. Comput. Aided Geom. Design 5 (1988), 27-31. | MR | Zbl
,[4] Optimal approximate conversion of spline surfaces. Comput. Aided Geom. Design 6 (1989), 293-306. | MR | Zbl
, , ,[5] Grundlagen der geometrischen Datenverarbeitung. Teubner, 1989. | MR | Zbl
, ,[6] Circular Splines. Submitted to Computer-aided design, 1990. | Zbl
,[7] Pythagorean triples in unique factorization domains. Amer. Math. Monthly 79 (1972), 503-505. | MR | Zbl
,[8] On the use of infinite control points in CAGD. Comput. Aided Geom. Design 4 (1987), 155-166. | MR | Zbl
,[9] Interpolation und Approximation mit sphärischen Kreissplines in Bézier-Darstellung. Dipl.-Arbeit Fachbereich Mathematik, Technische Hochschule Darmstadt 1990.
,