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SPHERICAL SPLINES

by J. HOSCHEK O, G. SEEMANN O

Abstract. -— In the present paper we will introducé Bèzier curves and Bézier spline curves on
algebraic surfaces, especially on a sphère. First we interpolate or approximate spherical point sets
by circular splines, then we develop Bèzier splines of higher degree on a sphère and on other
algebraic surfaces.

Keywords : Rational Bézier curves, interpolation with circles, approximation with circles,
spherical Bézier curves, Bézier curves on quadrics.

Résumé. — Splines sphériques. Dans Ie présent article nous introduirons des courbes de
Bézier et des splines de Bézier sur des surfaces algébriques, et plus particulièrement sur une
sphère. D'abord nous interpolons ou approximons des ensembles de points sphériques par des
splines circulaires, ensuite nous développons les splines de Bézier de degré élevé sur une sphère
ou sur d'autres surfaces algébriques.

1. CIRCULAR SPHERICAL BÉZIER CURVES

In the Bézier technique a circular arc can be described by [1, 5, 6]

g l b2 K

where the control points (Bézier points) b, must fulfil the circle condition

|b 0 b! | = | b 1 b 2 | - Bf(î) (i = 0 (1 )2 ) are the Bernstein polynomials, o> is

the weight. We assume that bOî b2 lie on a unit sphère with center <9, then

the angle 2 <p between b0, b2 can be determined by

2 cos <p = |b0 + b 2 | - (1&)

Because of the circle condition, bx must lie on a plane bisecting the angle

(b0, b2) and perpendicular to the plane determined by (<9>b0, b2)

(') Technical University Darmstadt, Fachbereich Mathematik, Technische Hochschule, D-
6100 Darmstadt.
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2 J. HOSCHEK, G. SEEMANN

Additionally bx must Ue in the tangent plane to the sphère at b0 and in the
tangent plane to the sphère at b2. Thus bj can have the représentation
(x dénotes the vector product)

b, =
4- b 2 b0 x b2

+ A2 cos2 <p sin 2 <p '
(lc)

where the parameter A describes the distance of bx from the plane
determined by (O, b0 , b2), (see fig. 1). If A = 0, (1) gives a parametric
représentation of a spherical great circle, for A ̂  0 we get small circles on
the sphère (see fig. 1). Additionally the weight <o must be adapted : if (1)
fulfils the circle équation, we get

sin cp

\J\ 2 + tan2 <p
(ld)

Figure 1. — Représentation of a small circle on the sphère.

Instead of the parameter À wc can also introducé the angle r between the
plane (0 , b0, b2) and the Bézier polygon (sec fig. 1) as measure for the
déviation of a small circle from the great circle. For a great circle
(A = 0! ) we have | b01>11 = tan <p (see [6, 9]), thus we obtain from figure 1

tan r tan <p = A

and for the weight <o with (ld)

o) = cos <p cos r .

(Ie)
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SPHERICAL SPLINES 3

For T = —, the circular arc is a half circle (see/zg. 2), while in this case

(o=0 and the control point b t moves to infinity. Therefore we have to split
the parametric représentation (la) of the circular are to (see [5, 8])

(2)
Bfa) + B&t) Bfa) + Bi(t)

where b! is the direction which points to the position of b{ at infinity. From
(la, c, e) we get

b0Xb2 77-

sin r with (le) for T -> — . (2a)sin r with (le) for T -•
2 cos2 <p 2

Figure 2. — Different values of parameter r ïead to smail or great circles on the sphère.

For T = 7T we get the complement are of the circular are which we would
obtain for r = 0 (see fig. 2).

vol. 26, n° 1, 1992
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2. CIRCULAR SPHERICAL SPLBSES

Now we will connect circular arcs to circular C1 spherical spline curves.
The i-th spline segment may have the représentation

x,(0 = (3)

with B%(t) as Bernstein polynomials over the interval te [0 , / tJ and
fjLt as length of the parameter interval of the segment X, (see [1, 5]). Two
neighboring spline segments are C ̂ continuous if and only if the first
derivatives in two corresponding boundary points are equal. Thus we get the
condition

1 ) + 1 — b2(i + 1)) = <»i /* I

(4b)

If we insert (le, le, If) this condition reduces to

l*l sin <pt + ! = M-, + i sin <px .

Additionally from (4a) follows that three neighboring Bézier points
b2 z + i, b2j+2ï b2(i + i) + i a r e collinear. As shown in figure 3, this collinearity
can be expressed in terms of the angles TI9 rl + l and 5I + 1, where
8l + l describes the angle between the planes (O, b 2 2, b 2 , + 2) a n d
(O, b2(, + i), l>2(J + 2))- Thus we have

TÏ + I = - (r ( + ôI + 1 ) . (4C)

Figure 3 . — C'-continuity and neighboring control points in the tangent plane at b2l+2*
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SPHERICAL SPLINES

To evaluate the angle 3t, we introducé the normal vectors n, to the planes
through (O,b2 l ,b2 ( l + 1))

b2 xb2 ( l + 1)

sm 2 pt '

With help of these normal vectors we get

det (
ï ïn 9 en « in 9 //•>

(4e)

|s in ô ( + ! | = |n ( x n I + 11 =

cos ^ I + i = n, . n , + i =

sin 2 <p t s in 2 <p t +

c o s 2 <p j c o s 2 <p f + ! - c o s

s in 2 <Pj s in 2 <pl + l

with i2, as angle between b2l and b2(l +2y $i + i is negatively oriented, when
the sign of the déterminante in (4e) is négative.

With this result — which only fails for diamétral points b2 l , b2(l + ̂  i.e.
b2l = -b2( I + i) (see [9]) — two neighboring C1 spline segments are
completely determined.

3. INTERPOLATION WITH SPHERICAL CIRCULAR SPLINES

Now we assume that on the unit sphère an (open) set of {n + 1 ) points
P( ( / = 0 ( l ) n ) i s given, which may have the spherical coordinates

P, = (cos at cos pi9 sin at cos p l9 sin f3 () . (5)

If now we identify these given points as Bézier points b2l , the interior Bézier
points b2l + i are determined by (16, c) and (4c, é) when the initial direction
TX is given. The interpolation spline curve dépends on the choice of this
initial direction (see fig. 4).

To reduce this degree of freedom, we can interpolate the given set of
points in respect to some constraints. For instance, we can construct circular
splines with the shortest are length : if r, is the radius of the z-th segment
(z* = 1(1) n) and yt its opening angle, we get the objective function

n

L = £ r( y( -• min . (5a)

or after calculation of rt and y£ out of (1)
n sin p̂(

L = ^ —^==^^ are cos w t -• min . (5è)

vol 26, n° 1, 1992
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p,

0
1
2
3
4
5
6

a

0"
45"
90"
90°
45°
50"

105"

0°
0°
0"

45°
45"
50°
60°

T l

- 135°
- 90°
- 45"

0°
45"
90°

135"
180°

are length

10.21413
9.61811
5.53946
4.66909
7.26881
8.18605
8.17716

16.94670

Figure 4. — Open spherical circular splines through the same points
and different starting tangent with direction rv
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SPHERICAL SPLINES 7

where o>i = CO^T^) (see (1/)). (5b) is a nonlinear optimization problem
which can be solved with help of wellknown optimization algorithms
included in software packages like IMSL, NAC. Figure 5 contains the
interpolation of the set of points out of figure 4 with circular splines with
shortest are length. The are lengih^of the curves in figure 4 and figure 5 are
mentioned in the included table.

Figure 5. — Shortest circular spherical splines through the set of points out of figure 4
(TJ = - 6.17300°, are length = 4.64796).

Special problems arise if we interpolate closed point sets : we have to

distinguish between odd and even sets of points P, ( i = 0 ( l ) « ) with

Po = P„. For a closed curve we must also have common tangents in

Po = Ptt, which lead to the condition

7" -f- O „ i t ) . 10 )

Similar to the interpolating problems with circular splines in the plane
(see [4]) we get

— for n odd, there are two solutions of (6) (with the same initial tangent
but with different orientation) ;

— for n even, the condition (6) cannot be held generally, therefore one
of the given points must be moved to fulfil (6). If (6) is fulfilled randomly, a
closed spline curve can be constructed for all initial tangents rx.

In both cases the closed solutions to a given point set can be evaluated in
an itérative way : in the odd case by changing rx and in the even case by
moving one of the given points (see/ïg. 6b, c). In figure 6a we have again
chosen the set of points out of figures 4, 5. The set is odd, therefore a closed
spline curve can be found without moving a point. Figure 6b contains an
even set of points : the given point P5 is marked by a square.

vol. 26, n° 1, 1992
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Figure 6B, b. — Closed spherical splines through the (odd) set of points out of figure 4 {fîg. 6à) ;
in figure 6b with an even set the given point P5 is moved to the new position.

The motion of the point P5 is not arbitrary — the suitable positions of
P5 fulfîl a circle as shown in figure 6c.

Figure 6c, — Suitable positions of P5 for a closed circular spline curve through an even set
of points.

4. APPROXIMATION WITH CIRCULAR SPLINES

Now we consider a given set of spherical points Ft (i = 0(1) n) which
should be approximated by a spherical circular spline curve X with N
segments and N ^n. The given points P̂  may have the (initial) parameter
values th which are found —- for instance — about the chordal distances of
the given points. Then we have to minimize the distance function

mm . (7)

For simplicity we assume that the flrst and last control points of the required

M2 AN Modélisation mathématique et Analyse numérique
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SPHERICAL SPLINES 9

circular spline curve X coïncide with the first and last points of the given set,
thus we have

b o ^ P o , *>2N = Vn (8)

The goal of the approximation process is to détermine the remaining
(TV - 1 ) control points b2k ( A ; = 1 ( 1 ) T V - 1 ) and the initial value
i j . When each of the unknown control points b2k can be set up about (see
(5))

b2k = (cos uk cos vk9 sin uk cos vk, sin vk) (9)

we have this result

THEOREM : A set of (n + 1 ) points P( (z = 0(1) n) on a unit sphère can be
approximated by TV spherical circular spline segments (TV < n ) with help of
2 TV — 1 nonlinear unknowns r l 3 un vl (i = 1 (1) TV — 1 ).

To obtain a low number of circular spline segments and an approximation
curve with low approximation error e0 the initial values

I. of suitable positions of TV circular segments,
II. of the parametrization of the given points

are very important when using nonlinear optimization algorithms.

I. To détermine an initial guess for the unknowns we subdivide the given
set of points into possible segments so that the points approximately lie on
circular arcs. As a spherical circle is an intersection curve of a sphère with an
arbitrary plane, we have to calculate the positions of planes sk which
approximate a part of the given set of points with respect to a given error
estimate d0. We use three indices j B , j M and j E with 0 ^j B <jM <j E ^ n
and test the olanes determined bv (P, . P , . i \ ) as follows :

" J h JM J ü '

We start with j B := 0 and k = 1 and set for each further plane
jE-=n and jM--=n— 1. Now we détermine the distances from all points
Pp j B <j <7 E from a plane ek and check whether the distances are less than
dQ. If this fails we flrst decrease j M and test again, if the test fails too, we
decreasey^ and setjM :=jE - 1. We repeat these steps until the distance test
is successful and then we mark the point Pj£ as end point of the k-th
segment. Now we increase k and start again with j B -=j E+ 1. If k is larger
than the number TV of the required circular spline segments, we have to
increase d0 and repeat the whole algorithm (starting with k = 1). Figure 7
shows a set of spherical points approximated by two planes.

Now initial values for the unknowns un vt (with respect to our theorem)
are determined and we can calculate r { so that the flrst segment of the curve
lies in the plane ex

vol 26, n 1, 1992



10 J HOSCHEK, G SEEMANN

Figure 7. — Planes to détermine an initial guess for the optimization algorithm.

II. Additionally we have to choose suitable parameter values tx for the set
of points P r Testing uniform, chordal, centripetal and geometrie parametri-
zation, the chordal parametrization turned out to be best in most cases.
Difficulties arise if the solution is supposed to have one or more segments
spanning more than TT— characterized by wt <: 0 — (see fig. 9). Increasing
N may improve the resuit in some cases (compare fig. 9b with 10a).

We suggest a parametrization relative to the initial guess (see fig. 10c) :
let Bk dénote the initial guess for b2k and Bo := Po, B„ := P„

• s for parameter * in [0, s] .

Assuming j k being indices so that VJk = J$k, we get the parameter values
tj by

t.-t, i = •Ak for j k _ ] (10)

Instead of dividing up the Ak according to chord lengths, we could use the
shortest distance to the curve of the initial guess, but this works only if the
initial guess is a relatively good approximation.

After determining these initial values, we start the nonlinear approxi-
mation process to minimize the total error sum (7). If the distances
ex — | P, — X (tt ) | are less than the required maximal error e0, the procedure
stops — otherwise we introducé a parameter correction ([3], [4]) and start

M2 AN Modélisation mathématique et Analyse numérique
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SPHERICAL SPLINES 11

START

points Pfc,* = 0(l)n
number ofjïegments N

calculate initial values

start again and
increase number N of seg-

ments, or
use another initial parame-

trization

détermine parameter values ik

( STOP

Figure 8. — Âlgorithm for approximation with spherical splines.

the approximation process again. If the distances ei do not move below the
maximal error e0, we can elevate the number N of segments (for instance by
subdividing the segment with the largest error et at the point with this largest
error) or by changing the initial parametrization. The whole approximation
process follows the âlgorithm represented in figure 8.

In the following figures we give some examples about the approximation
of spherical set of points. In the figures 9, 10 we demonstrate the effect of
the choice of parametrization. First we try to approximate the given set of
points with two circular segments and choose chordal parametrization.
Figure 9a shows the error vectors for the initial parametrization, figure 9b
shows the approximation curve. One can observe, that the approximation
process is not successfuL Therefore we have to change our strategy : we can
elevate the number of splines and obtain the approximation curve in
figure 10a. — If we do not want to elevate the number of splines we could
change the initial parametrization and hope that other initial values lead to a
better result. As shown in figure 10c this strategy is successful if we use the

vol. 26, n 1, 1992



12 J. HOSCHEK, G. SEEMANN

/

Figure 9a. Figure 9b.

Figure 9a. — Error vectors to the initial values for chordal parametrization
for two segments.

Figure 9b. — Approximation with the parametrization out of figure 9a.

relative parameter (10) instead of the chordal parametrization. Figure 106
contains the first approximation of the given set of points without parameter
correction (observe the effect of the parameter correction !).

Until now we have only approximated open sets of points. Now we will
extend our method to a closed set of points and their approximation with
closed C l circular spherical splines. Similar to the interpolation process we
have to distinguish between an odd and an even number N of segments (see
chapter 3). For TV odd, we can set up the unknown control points

Figure 10a. — Approximation of the set of points out of figure 9
with chordal parametrization but with three circular segments (initial approximation curve).

M2 AN Modélisation mathématique et Analyse numérique
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SPHERICAL SPLINES 13

Figure 10b. Figure 10c.

Figure 10b. — Approximation of the set of points out of figure 10a
with parametrization relative to the initial value (10) and two segments.

Figure 10c. — Approximation and parameter correction of the set of points out of figure 10 b,
please observe the effect of the parameter correction.

b2k analogousiy to the open splines (see (9)) and calculate r{ with the
condition (6) to

\

——'

Figure l ia . Figure

Figure l ia . — Approximation of a closed set of points by Cl spherical splines
vvith 6 segments without parameter correction.

Figure 11 b. — Approximation of a set of points out of figure l i a
after parameter correction.

vol. 26, n 1, 1992



14 J. HOSCHEK, G. SEEMANN

For TV even, we set up b2 & k = 1(1) N — 2 analogously to the open case,
but the point b2(Ar_1) is determined by the other points : the Bézier point
t>2(Ar-i) rnust lie on a circle through the points b0 and b 2 ^ _ 2 ) . Let
Y(t) be the Bézier représentation of the arc from b0 to ^2(N-2)

 a n d
Y(0 the représentation of the complementary arc, then we introducé the
opening angle 0 to dénote the position of b2(Â  -1) ° n this circle :

, [Y(cos 0) if cos 0^0

lY( - cos 0) if cos <9< 0 .

Thus we get

PROPOSITION : A closed set of points P, (/ = 0(1) n), with Po = Pra on a
unit sphère can be approximated by N spherical closed C1 circular spline
curves (N ~=z n) with help of 2 N — 2 nonlinear unknowns.

Figure 11 contains the approximation of a set of points lying on the
intersection curve of the sphère and a cylinder by closed circular splines.

5. NONCIRCULAR SPHERICAL BÉZIER SPLINES

Now we will construct noncircular spherical Bézier curves and Bézier
splines. That means that we are looking for curves represented by rational
Bernstein basis functions which are completely lying on a sphère, even if the
Bézier control points are in part not on the sphère. The rational spherical
curve X may have the représentation

or in Bernstein Bézier description of degree n

with the Bézier control points by and the weights Pj (n = 2, see (la)).
The components of (lia) must fulfil the équation of a (unit) sphère

Therefore the xt are « pythagorean » functions [2, 7]. If we extend the resuit
of Kubota [7] to the IR3, we get a necessary and suffîcient représentation of
spherical rational curves

M2 AN Modélisation mathématique et Analyse numérique
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SPHERICAL SPLINES 15

xx(t)=s{t){u\t)-v2{t)-w\t))

x2(t)=2s(t)u(t)v(t)

with arbitrary functions s, w, v, w.
To get Bézier curves, we have to choose these functions as Bernstein

représentations and without loss of generality we choose s(t) — 1. Thus for
quadratic spherical curves (circles), we can set up for instance

M ( 0 =H

v(t) = v0Bfo) + vlBl(t)9 (I3d)

w(t) = w0*o(0 +Wi5}(0

with

w0 = A0cos <p0 , ux — À!cos <pi ,
v0 = Aosin <p0cos tf/0, vx = X^ sin <px cos ̂ r, , (136)
w0 = A 0 sin <pQ sin ̂ 0 , Wj = A ! sin <p x sin t/r, .

If we insert (13) in (12), we additionally need the following transformation
table for Bernstein polynomials

From (12) and (13) we get parametric représentations of quadratic Bézier
curves which lie completely on the sphère and therefore these curves are
circles (see chapter 2).

Now we choose nonlinear Bézier représentations, for instance

11(0 -

v(t) = i?o*2(0 + «i *?(0 + v2Bl(t) (14a)

and have the transformation table

(B2(t))2 = B$(t) , B2(t) I
Bl{t) B2(t) = I 52

4(0 , B2(t) B2(t) = I *34(O (146)
o 2

vol. 26, n° 1, 1992



16 J. HOSCHEK, G SEEMANN

Additionally we choose as constants un vn wt

UQ = À 0 COS <p 0 , M j = À ! COS <p x ,

ü0 = À o sin ^>0 cos tj/0 , Uj — À j sin <£>! cos t//x

M/0 = À 0 sin <p0 sin 0-o , w} = À ! sin <pt sin (̂  t ,

U2 — A 2 COS <£> 2

p2 = A2 sin ^>2 cos

w2 = A2 sin <JP2 sin

(14c)

If we insert these assumptions in (12) or the Bézier représentation (Hé), we
get the explicit représentation of a quartic spherical Bézier curve. The
Bézier control points are

cos 2 cp0

sin 2 <p0 cos tjf

sin 2 <p 0 sin </r

i uoux- vov{ -

N,

uow{

(144)

with Nx = w0 ux + r 0 u t + w0 Wj

ƒ w0 u2 - v0 v2 - w0 w2 + 4 M,2 - 2 A ? \

Ni
Uo W2

(14e)

with N2 = uQu2-\- VQV2 + w0w2 + 2 A x

b3 = ^i([un vl9 wt] exchange by [w, + \,vl + ls v̂ i + 1] (/ = 0, 1))

b4 = bo(<po exchange by <p 2s t^0 exchange by \jf 2) .

As weights we have /30 = AQ, ^ I = ^ b j82 = N2,
fS4 follow from (14e).

These calculations can be easily done with help of a formula manipulator.
Figure 12 shows two examples of quartic spherical Bézier curves and the
corresponding control polygon.

The weights

M2 AN Modélisation mathématique et Analyse numérique
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(p

A

0

0
60°

1

1

60°
90°
0.6

2

45°
45°

1

Fig. 12a.

(P

A

0

0
60°

1

1

9 °

0
0.6

2

45°
45°

1

Fig. 12b.

Figure 12a, b. — A convex and a nonconvex quartic spherical Bézier curve
and the corresponding Bézier polygon.

If we develop sextic spherical Bézier curves, in the assumption (14a) we
hâve to introduce cubic Bernstein polynomials and constants uh vh

Wj with i = 0(1) 3. Analogously to (146) we get the transformation table

3 n3 *• D 6
0 **l = 9 1

B 3 = 3
1 5

>3 D3 _

»3 #3 A

9 «6 ,

3 *• n 6 .

3 = ^ j f j 3 >

3 n3

3 n3

(15a)

vol. 26, n° 1, 1992



18 J. HOSCHEK, G SEEMANN

In extension to (14c) we have to introducé A 3, <p3, i//3 to describe
u3, i?3, w3 analogously to (14c). With help of corresponding calculations we
get the Bézier points

b0 and b{ in the same représentation as in (\4d)

2(w0 u2 — vQ V2 — w0 w2) 4- 6 u { - 3 A x \

2 («o'

2(w0i

\

1 uou3

M 0 D 3 -

u0 w3

N2

N2

v2 4- 3 ux w{ H- w2

- t?0 u3 - w0 w3 4

f i?0w3 + 9(w1 i?2

+ w0 w3 4- 9(w! w

>o)

w.)

- 9 ( ,

^ 3

+ u2

2 + U

1

!, M 2 — VlV2-- W[ W;

» l )

' 2 w l )

N2 = 2(w0 M2 + y01?2 + w0 W2) + 3 A f and

7V3 = u0 u3 4- v0 Ü3 + w0 w3 4-

wi th

b 4 - b 2 (exchange [wIS vl9 wt] by [M( + u vl + u wt + 1 ] ) with z = 0 ( 1 ) 2 ,

b 5 = b j (exchange [wi3 vl9 wt] by [M, + 2 S vl + 2, wt + 2 ] ) with i = 0 ( 1 ) 2 , (15c)

t>6 = b o ( e x c n a n E e <P o b v <P$> exchange tf/ 0 by i(/3) .

The denomina to r s TV̂  of (15Z>), (15c) lead to the weights /?£.

T w o examples of spherical Bézier curves of degree 6 are represented in
figure 13.

N o w we will const ruct G l-continuous quart ic spherical spline curves. With
(11&) we dénote the z-th segment by

E Pj Bj\t)

(16)

j=0

M2 AN Modélisation mathématique et Analyse numenque
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\

<i>
A

0

0
60°

1

1

36°
0

0.6

2

45"
45"

1

3

45°
90°

1

Fig. 13a.

<p

A

0

0
60"

1

1

36°
0

0.6

2

22.5"
45"
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Figure 13a, b. — A convex and a nonconvex spherical Bézier curve of degree 6
and the correspondu^ Bézier polygon.

Additionally the angles in the set up (14c) are denoted by <pki9

ij;ki(k = 0, 1, 2 ). For C°-continuity we fïrst obtain

(lia)

If we insert the Bézier points (14d) and (14e) in (17a), we get

<P2,i-l = <P0i> (llb)

Two Bézier curves are G ̂ continuous iff their common boundary points
and the corresponding first neighboring points of the two segments are
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20 J. HOSCHEK, G. SEEMANN

linearly dépendent, thus we hâve the wellknown condition (see (4a))

(b / _ l i 4 -b | . _ l f 3 ) = M(bn-b i o) . (17c)

We can eliminate the parameter /-i suitably and get as sufficient Gl-
continuity condition (with the abbreviations (17a) for the components of the
common boundary point)

1 - X ;
t a n <p ! ( _ ! = •

1 - xt

sin

• "• sin^fZ,- + cos tf/liyi

If we only construct a spline curve with two segments the angles
{f/x t and *l*\ti_\ in (lld) can be chosen freely. If more than two segments are
required, one has to observe additional compatibility conditions which
follow from (lld) by elevating the index i. From the first équation in (lld),
we get

t an <px i = -. (17e)

i

<P0i

<P\i

1

22.5Q

1.485
67.5°

2

67.5"
- 1.546

- 77.5°

3

- 77.5°
- 1.526

- 32.5"

4

- 32.5"

- 1.407
22.5°

i

*w

1

- 5 °

1.448

5°

2

5e

1.597

- 5°

3

- 5°

- 1.455
5°

4

5°

1.552
- 5 °

1(1)4)

Figure 14. — Closed sphericàl quartic Bézier curve.
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(17 )̂ is equivalent to the second condition in (lid), thus we have a joining
condition for the angle \ffXl

tan (17/)

Additionally the first and the last points of the spline curve coincide for
closed spline curves. Figure 14 contains a closed quartic spherical Bézier
spline curve with four segments. The boundary points of the segments are
denoted by circles.
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Figure 15 a. — Bézier curve of degree 4 on a hyperboloid.
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Fig. 15 b. — Bézier curve of degree 6 on a hyperboloid.
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6. GENERALIZATIONS

The introduced method for constructing spherical Bézier curves can easily
be extended on other quadratic surfaces : for instance for Bézier curves on
an ellipsoid only the axes a, b, c must be inserted in the représentation (12).
For a hyperboloid

x * X*2 X3

instead of (12) we can set up

xx{t) = a$(t)(u2{t) - v2(t) + w\t))

x2(t)=2bs(t)u(t)v(t)

2cs(t)u(t)w(t) K }

Figure 15 contains a Bézier curve of degree 4 and a Bézier curve of degree 6
on a hyperboloid and the corresponding control polygon.
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