@article{M2AN_1989__23_4_597_0, author = {Geveci, Tunc and Christie, Ian}, title = {The convergence of a {Galerkin} approximation scheme for an extensible beam}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {597--613}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {23}, number = {4}, year = {1989}, mrnumber = {1025074}, zbl = {0727.73093}, language = {en}, url = {http://www.numdam.org/item/M2AN_1989__23_4_597_0/} }
TY - JOUR AU - Geveci, Tunc AU - Christie, Ian TI - The convergence of a Galerkin approximation scheme for an extensible beam JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1989 SP - 597 EP - 613 VL - 23 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1989__23_4_597_0/ LA - en ID - M2AN_1989__23_4_597_0 ER -
%0 Journal Article %A Geveci, Tunc %A Christie, Ian %T The convergence of a Galerkin approximation scheme for an extensible beam %J ESAIM: Modélisation mathématique et analyse numérique %D 1989 %P 597-613 %V 23 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1989__23_4_597_0/ %G en %F M2AN_1989__23_4_597_0
Geveci, Tunc; Christie, Ian. The convergence of a Galerkin approximation scheme for an extensible beam. ESAIM: Modélisation mathématique et analyse numérique, Tome 23 (1989) no. 4, pp. 597-613. http://www.numdam.org/item/M2AN_1989__23_4_597_0/
[1] Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numer. 13 (1979), 75-100. | Numdam | MR | Zbl
& ,[2] Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90. | MR | Zbl
,[3] A Galerkin method for a nonlinear integro-differential wave system, Comp. Meth. Appl. Mech. Eng. 44 (1984), 229-237. | MR | Zbl
& ,[4] Methods of Mathematical Physics, Vol. 1, Wiley-Interscience, New York, 1953. | MR | Zbl
& ,[5] Free vibrations and dynamic buckling of an extensible beam, Math. Anal. Appl. 29 (1970), 443-454. | MR | Zbl
,[6] On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms, Math. Compt. 42 (1984), 393-415. | MR | Zbl
,[7] Bifurcation to divergence and flutter in flow-induced oscillations : An infinite dimensional analysis, Automatica 14 (1978), 367-384. | MR | Zbl
& ,[8] On convergence of the finite element method for the wave equation, SIAM J. Numer. Anal. 22 (1985), 245-249. | MR | Zbl
,[9] Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Compt. 43 (1984), 21-27. | MR | Zbl
,[10] An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973. | MR | Zbl
& ,[11] Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Compt. 34 (1980), 99-113. | MR | Zbl
,[12] Galerkin Finite Element Methods for Parabolic Problems, Springer lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin, 1984. | MR | Zbl
,[13] The effect of the axial force on the vibration of hinged bars, J. Appl. Mech, 17 (1950), 35-36. | MR | Zbl
,