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MATHEMATICAL MODEWNG AND NUMERICAL ANALYSIS
MODEUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

vol 23, n° 4, 1989, p. 597-613)

THE CONVERGENCE OF A GALERKIN APPROXIMATION
SCHEME FOR AN EXTENSIBLE BEAM (*)

Tune GEVECI Q) and Ian CHRISTIE (2)

Commumcated by V. THOMEE

Abstract. — Error estimâtes are denved for the convergence of a semidiscrete Galerkin
approximation scheme for the équation of an extensible beam A modification of the Crank-
Nicolson time discretization is also discussed

Résumé. — Les estimations de l'erreur sont déduites de la convergence d'un schéma
d'approximation semi-discret au sens de Galerkin pour une poutre extensible. On discute aussi
une modification de la discrétisation du temps de Crank-Nicolson

1. INTRODUCTION AND THE MATHEMATICAL BACKGROUND

The transverse displacement u of an extensible beam with hinged ends,
assuming that the beam corresponds to the interval [0, 1], is governed by
the following équation that has been suggested by Woinowsky-Krieger [13] :

Df u(t,x) + aD* u(t,x)-

P
(1.1)

u(t, 0) = M (f, 1) = 0, Dlu(t, 0) = D2
xu{t, 1) = 0, t > 0,

w(0, x) = uo(x), Dt u(0, x) = ùo(x), x G [0,1] .
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598 T. GEVECI, I. CHRISTIE

Hère a > 0, 7 :> 0 and (3 are constants, and w0? ù0 are given functions. As in
Dickey [5] and Bail [2], p may be positive or négative corresponding to a
beam under tension or compression, respectively.

Equation (1.1) and similar équations have been investigated by several
authors. We refer the reader to the papers by Dickey [5] and Bail [2]
concerning the existence of generalized solutions and to the paper by
Holmes and Marsden [7] for the existence of smooth solutions. In this paper
we will examine the stability and convergence of a semidiscrete Galerkin
approximation scheme for (1.1) and a fully discrete scheme based on it.

We use the standard notation for Sobolev spaces and norms. In
particular, L2 dénotes L2(0, 1), (.,.) dénotes the L2-inner product,
||. | | dénotes the L2-norm. Hk is Hk(0, 1) and l ) . ^ dénotes the norm of

Hk. Hl = {u e H1 : w(0) = «(1) = 0} and H2 dénotes Hl n H2,
The Galerkin formulation of (1.1) that is relevant to the approximation

schemes that we will consider is as follows :

Find u(t)e H2 such that for each <p e H2 and t > 0
(D2u(t)^) + a(D2u(t), D2<p) -

(1-2) - (P + y\\Dx u(t)\\2)(D2u(t), <p) = 0
and
u(0) = u0, Dtu(0) = ù0

(D2 u (t, 0 ) = D2 u (t, 1 ) = 0 are natural boundary conditions) .

Let us define the bilinear form

(1.3) a(u,ip) = a(D2u9D
2
ip), u, <p e H2 .

If the domain of A is defined as

(1.4) D(A) = [ueH2n H4:D2u(Q) = D2u(l) = 0}

and A : D(A) c L2-> L2 is defined by

(1.5) Au = aDA
xu

we have

(1.6) (Au,y) = a(u,<p), ueD(A), <? e H2 .

a (.,. ) is a bounded, coercive bilinear form on H2 x H2 [4, p. 273] and A is a
positive-definite, self-adjoint operator. We note that A u = ƒ means that u is
the solution of the elliptic boundary value problem

aJ>îu = / i n (0 ,1 ) ,

(0) ( l ) 0 Z
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A GALERKIN APPROXIMATION FOR BFAMS 599

u e H2 and a(u, 9) = (ƒ, <p), 9 G if2, is the Ritz-Galerkin formulation of
(1.7).

Setting

(1.8) / (u ) = - (p + 7 | P , «||2) D,2»,

(1.1) can be expressed for w(0 e Z>(A), r 5= 0 as

(1.9) Dfu(t)+Au(t) + / ( M ( 0 ) = 0, t > 0, M(0) - Mo, A w(0) = «<,,

and (1.2) can be expressed for u(t) e H2, t ^ 0, as

(1.10) (Dfu(f)9 <p) + a(u(0 , <P) Ó2

Let Sh cz H2 dénote the space of Hermite cubics corresponding to a partition
of [0,1] to subintervals of length h (see, for example, Strang and Fix [10]).
Any finite dimensional subspace of H2 leads to analysis along the same Unes,
but we will specifically consider the semidiscrete version of (1.10) that seeks
uh{t) e Sh9 t =* 0, which satisfies

(1 11) <D '"*('>» 9 / l ) + *&*(*)> *h> + ( / ( M A ( 0 ) . <P*) = 0, t > 0, 9A e 5A,
WA(O) = MO,A» A " f ( 0 ) = wo>A

where uOik, ù0th G 5^ are approximations to w0, M0, respectively.
Our convergence analysis and the fully discrete scheme we consider

necessitate the expression of (1.9), (1.10) and (1.11) as évolution équations.
We write (1.9) as

D\u(t)i ro -/ ] [«(0l f 0 1 roiA U ( O J U 0 JU(OJ L / ( « ( O ) J " LoJ'
where / dénotes the identity operator, and set U(t) = [«(/), û(t)]T

(T dénotes the transpose),

0.12, A -

so that

A

where Uo = [u0, ùQ]T.

The évolution équation (1.13) will be considered within the framework of
the Hubert space H = H2 x L2 equipped with the inner product

(1.14) (U, V\ ^a(u,v)+(ù,v)

vol. 23, n° 4, 1989



600 T. GEVECI, I. CHRISTIE

for U = [u, ù]T, V = [v, v]T, and the associated norm

(1.15) ' •

Due to the coercivity of a (.,.), \\.\\e is equivalent to the usual norm of
H2xL\

The domain D(A) of A is defined as D(A ) x H2 and A : D(A) <ZLH-*H
is skew-adjoint (iA, z = \/— 1, is self-adjoint) so that — A générâtes the
unitary group e"tA. In particular,

(1.16) \ \ e - ' A U 0 \ \ e = \ \ U Q \ \ e , t e R .

The map F : H -> tf is C00. Thus, as discussed by Holmes and Marsden [7], a
strong solution U(t) of (1.13) exists for UoeD(A) and
D?U(t)eD(An-k), fc = 0, 1, ..., n - 1 , n = 1, 2, ..., for t/0 € D(À") and
all f ̂  0. Hère £>(An), n = 2, 3, ..., is defined inductively as the set of all
C /eD(A n - 1 ) for which A t / e / ) ( A " - 1 ) and is endowed with the graph
norm

It is readily seen that J7 = [M, Ù]T e D(A") iff

(1.17) ue H2n + 2, M(0) = M

M ( 1 ) = w(2)(l) = ••• = « ( 2 n )( l ) = 0 ,
M e iï2", ù(0) = M ( 2 ) (0) = • • • = w(2"-2>(0) = 0,

M(1) = ù ( 2 )(l) = • • • = M< 2 " - 2 >(1) = 0 ,

and that ||.| |O(AB) is equivalent to the norm of H2n + 2 x H2n on D(A").

The existence of the solution for ail t s= 0 follows from the conservation of
energy, energy being

(1.18)

(see Bail [2]). Conservation of energy follows directly from the Galerkin
formulation (1.10) and leads to bounds on || U(t)\\e in terms of ||w(0)||e [2].

We would like to emphasize the locally Lipschitz character of F :

(1.19) \\F(U)-F(V)\\e^K(\\U\\e,\\V\\e)\\U-V\\e,U,VsH,

where K is a continuous function [2]. (1.19), coupled with conservation of
energy (1.18) leads to the well-posedness statement

(1.20) e | | e

M2AN Modélisation mathématique et Analyse numérique
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A GALERKIN APPROXIMATION FOR BEAMS 601

where U(t) and V (t) dénote solutions corresponding to the initial conditions
Uo and VQ, respectively, and M is a continuous function [2].

In the convergence analysis we will have occasion to refer to regularity
results of the form

(1.21) \\D

where C is a continuous function of its arguments. Even though we will not
bother to be spécifie about the form of C in order not to clutter the notation
and distract from the main features of the analysis, the reader should be able
to convince himself that such bounds do in fact exist as long as the initial
data is sufficiently regular (UQe D(An + k) with n + k sufficiently large)
thanks to the papers [2], [7].

We will express the évolution form of the galerkin formulation (1.10) as
follows : U(t) = [u(t), ü(t)]T x H2 x H2 is determined so that

(1.22) (A Ht), 9) + a(u(t), 9) + ƒ (u(r), 9) = 0 , <p e H2 ,t > 0 ,

u(Q) = u0, M ( O ) = MO.

Introducing the bilinear form Iï(.,.) on H2 x H2 by

(1.23) U(U, * ) = -a(ù, 9) + «(M, 9)

where <ï> = [<p, cp]r, (1.22) can be written as

(Dt U(t), 4>)e + n(t /(r) , * ) + (F(£/(0), <̂ )e = 0 ,

(1.24) <ï> e H2xH2 , f > 0 ,

and C/(0)-£/0 .

Note that II is skew-adjoint,

(1.25) n ( l / , * ) = - n ( * , C/)

and, in particular

(1.26) n(C/, t/) = 0 .

Parallel to the above expressions, the semidiscrete Galerkin formulation
(1.11) can be expressed as follows ; Uh(t) e Sh x Sh,
Uh(t) = [uh(t)9 ûh(t))

T, t^O, is determined so that for t^Q and each

(1.27) (A ^ ( 0 , **)e + n(uh(t), %) + (F(t/A(0), ^ ) e = o
vol. 23, n° 4, 1989



602 T. GEVECI, I CHRISTIE

and Uh(0) = UOih = [u0Jl, ùOih]
T .

Introducing the positive-definite,' self-adjoint operator Ah : Sh -• Sh by

(1.28) (Ahuh,<ph) = a(uh,<ph), <pheSh,

we can express (1.27) in a manner which is parallel to (1.13) :

(1.29) Dt Uh(t)+Kh Uh(t) + Pe
hF(Uh(t)) = 0

where

(1.30) ° - ' '

Ih: Sh-+ Sh is the identity, and Pe
h\H -• Shx Sh dénotes projection with

respect to (•,.)e. Just as A, Ah is skew-adjoint and générâtes, in
Shx Sk, the unitary semigroup e~l \ In particular

Conservation of energy (1.18) for the solution U(t) of (1.13) is based on the
Galerkin formulation (1.24) and is also valid for the solution Uh(t) of (1.29).
We therefore have the stability result

(1.32) ^ ^

where M is independent of h, parallel to the well-posedness statement
(1.20), the proof of which is exactly the same as the proof of (1.20) in [2],

Let us dénote the solution u of the elliptic boundary value problem (1.7)
by Tf so that Tf s H2 and

(1-33) fl(r/,<p)= ( ƒ , 9 ) , veH2.

The approximate solution operator Th: L2 -> Sh is defined as

(1.34) «(7* ƒ,**) = ( ƒ , * * ) , <t>heSh.

We have the well known approximation properties

(1.35)

(see, for example, [10]).

Modélisation mathématique et Analyse numérique
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A GALERKIN APPROXIMATION FOR BEAMS 603

The Ritz projection P2: H2 -> Sh is defined by

(1.37) a(P2
hu,<Ph) = a(u,<ph), <s?h e Sh ,

so that Plu = ThAu, and by (1.35), (1.36) we have

(1.38) | |M-P f c
2

M | |2^Cft2 | |M | |4

(1.39) \\u-P2
hu\\ «CA4 | |u | |4 .

In the next section we will prove that

(1.40)

(1.41)

The third section is devoted to the discussion of a fully discrete scheme
based on a Crank-Nicolson type time discretization which conserves energy.
Similar schemes have been discussed by Sanz-Serna within the context of
the nonlinear Schroedinger équation [9] and within the context of the
extensible string équation by Sanz-Serna and Christie [3].

2. THE RATE OF CONVERGENCE OF THE SEMIDISCRETE GALERKIN
APPROXIMATION

THEOREM 1 : With the notation of section 1,

(2.1) \\Uh(t)-U(t)\\e^C(T,\\U0\\D(A3))h
2, 0*t*T,

if

(2.2) ||tfo,*-tfo||, 2

Remark 1 : We thus have

\\ùh(t)-ù(t)\\ =

for 0 « t *£ T if

and, according to (1.17),

u0 e H8, u0(0) = MO
(2)(O) = «o(4)(O) = «o(6)(0) = 0 ,

MO (1) = 4 2 \ l ) = u^\0) = MO
(6)(O) = 0 ,

vol. 23, n" 4, 1989



604 T. GEVECI, I. CHRISTIE

M0 G H6 , ÛQ(O) = ^ 2 ) ( 0 ) = ^ 4 >(0 ) = 0 ,

Such stringent hypotheses seem to be indispensable in the case of hyperbolic
équations. The reader may compare with the results for the wave équation
(e.g. Baker and Bramble [1], Geveci [6]) and Rauch's recent paper [8] on
the necessity of such assumptions in a spécifie case.

Proof of Theorem 1 : We introducé Ph: H
2 x H2 -* Shx Sh by

(2.3) PhU= [P2
hu,P2

hù]T

where U = [u, ù]T and Pi is the Ritz projection (1.37).
Since U(t) - Uh(t) = (U(t) - Ph 1/(0) + (Ph U(t) - Uh(t)), and

(2.4)

by (1.38), so that

(2.5)

thanks to the regularity statement (1.21) and the description (1.17) of
D(Ak), all we need to show is that Eh(t) = Ph U(t) - Uh(t) satisfies

(2.6) l l ^

By the définition of Ph and n (1.23)

(2.7) n(PhU,Qh) = n(U,<l>h), ®heShxSh.

We can therefore write (1.24)

(Dt U(t), ®h)e + U(Ph C/(0, *A) + (F(C/(0), * J e = 0 , &h e Sh x Sh ,

and

(2.8) (A Ph U{t), *f t)e + n(Ph U(t), Qh) + (F(Ph U(t)), ®h)e =

where

(2.9) PA(0= (Ph-I)DtU(t)+(F(PhU(t))-F(U(t))).

Since

(2.10)

Modélisation mathématique et Analyse numérique
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A GALERKIN APPROXIMATION FOR BEAMS 605

((1.28), (1.30)), we can express (2.8) as

(2.11) Dt Ph U(t) + A, Ph U(t) + Pe
hF(Ph U(t)) = PI 9h(t) .

We rewrite (1.29) :

(2.12) Dt £4(0 + A, Uh(t) + PI F(Uh(t)) = 0 .

From (2.11) and (2.12) we obtain

(2.13) Dt Eh(t) + A, Eh(t) = Pe
h 9h(t) - Pe

h(F(Ph U(t)) -F(Uh(t)))

so that

(2.14) Eh(t) = e-tAhEh(0)+ P e~ (t~j)Ah [Pi P A(T) -

- Pi{F(PhU(r))- F(Uh(r)))]dr .

Thanks to (1.31) and the fact that Pe
h is the projection in H2 x L2, (2.14)

leads to

( 2 . 1 5 ) | | e e

f T ) | | e + \\F(PhU(j))-F(Uh(T))\\]dT.

Now we make use of the local Lipschitz property (1.19) of F and the
boundedness of || U(t)\\D(A), || Uh(t)\\e in terms of the initial data (cf. (1.21),
(1.32)) ;

(2.16) \\F(PhU(r))-F(Uh(T))\\e^C\\Eh(T)\\e

(We shall not indicate the quantities that C dépends on expliticly. C
dépends, in particular, on T and || ̂ oll^^y I n t n e sequel C may stand for
different quantities that are bounded in terms of the data.)

Combining (2.15) and (2.16) we obtain

(2.17) ||E*(0||,* \\Eh(0)\\e+ f IIPaOOII.dT + C f' ||E*(x)||e dv .

(2.17) and Gronwall's lemma lead to

(2.18)

vol. 23, n° 4, 1989



606 T. GEVECI, I. CHRISTIE

so that the proof of Theorem 1 will be concluded once we show that

(2.19) \\Eh(0)\\e^Ch2

and

(2.20) I M 0 | | e = s C * 2 , O^t^T.

We have

Eh(Q) = PhUo-UOth

= (PhU0-U0)+(U0-U0,h)

so that (1.38) and (2.2) yield (2.19).
From the définition (2.9) of ph(t), (1.38), the Lipschitz property of F, and

the regularity assumption on Uo, (2.20) is also readily obtained.
We will now prove the O (h4) estimate for \\uh(t) ~ u(t)\\. Before we

state and prove the relevant theorem we will introducé some mathematical
background and notation in addition to that which was presented in
section 1.

As in baker and Bramble [1], Thomée [11] and Geveci [6], we will
introducé another inner product on H2 x L2 :

(2-21) (U,V)_e,h= (u,v)+(ù,Thv)

for U - [u9 ù]T , V = [v, v]T e H2 x L2 .

The associated seminorm is denoted as ||-| |_e h (Th is symmetrie, positive

semidefinite on L2 and positive definite on Sh so that ||. || _e h is a norm on

Sh x Sk).
Now, Ah is skew adjoint when 5^ x Sh is equipped with the inner product

) - * , A since

Uh9 Vk)_e>h = - (ùh, vh) + (Ah uh9 Th vh)

= -(Uh,AhVh)_e,h.

Therefore Ah générâtes a unitary group in Sh x Sh equipped with (.,.)-e,/t
and we have

(2.22) \ \ e - ^ U O i h \ \ _ e j i = \ \ U O t h \ \ _ e h , t e R .

M2AN Modélisation mathématique et Analyse numérique
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A GALERKIN APPROXIMATION FOR BEAMS 607

Another fact that we shall appeal to is the following :
Dénote

(2.23)

Then

(2.24) )

This is proved as in Thomée [11] and immediately leads to

(2.25) | |J>*2<p|L2 > f c«C(| |<p| |+/i2 |M|2) .

(2.24) and (2.25) will be utilized in the following way :

LEMMA 1 : We have

(2.26) H ƒ ( « ) - / ( » ) | | _ 2 , * * C ( | | « - » | | +h2\\u-v\\2)

where C = C ( | | K | | 2 , ||t>||2) .

Proof:

ƒ ( « ) - ƒ ( » ) = ^ + y\\Dxv\\2)D2v- (V+y\\Dxu\\2)DÏu

= (p + y || Dxv ||2) D*(y-u) +

+ y(\\Dxv\\2-\\Dxu\\2)D2u

= ^ + y\\Dxv\\2)D2(v-u) +

+ y(Dx(v-u),Dx(v + u))D2u

= (p + y ||Dxv ||2) D2(v -u)-y(v-u, D2(v + u))D2u

so that

C(\\v\\2
2,\\u\\2)\\v-u\

by (2.25).
We are now ready to prove our resuit :

THEOREM 2 : Under the same conditions as in Theorem 1,

(2.27) | | u f c ( 0 - K ( 0 | | * C ( 7 \ \\U0\\D{Ki)).h\ Q^t^T

if, in addition

(2.28) || «o - "o, h II = 0 (h4) and || ù0 - ù0, h || = 0 (h4) .

vol. 23, n° 4, 1989



608 T. GEVECI, I. CHRISTIE

Proof: A gain y

(2 29)
= (U(t)-PhU(t)) + Eh(t),

and

|| U(t) - Ph U{t)\\_eJi ^ C(\\u(t) - P2
hu(t)\\ + ||ù(O - P2

hù(t)\\_2h)

^C{\\u(t)-P2
hu{t)\\

since \\Th\\ ^ C, say, for 0 < h ̂  h0. By the approximation property (1.39),

(2.30) \\U(t) - Ph U{t)\\_eh * C( | |«(0 | | 4 + II«(OII4)^4-

In order to estimate Eh(t) we proceed as in the proof of Theorem 1 :

e' ('"T)A*Pf[pA(x) + F(Ph £/(T)) -F(Uh(r))] d-r ,
o

and by (2.22)

(2.31) \\Eh(.t)\\_eh*\\Eh(P)\\_eh+ f

We will estimate each term on the right of (2.31) separately

£fc(0) = PhUQ- U0,h = (Ph Uo - Uo) + (Uo - U0,h) ,

so that

(2.32) ||

As for the second term :

Pi P*(T) = Pe
h{Ph -I)D, C/(T) + Pe

h{F(Ph(T)) -

(2 33) n{J>h - / ) D ' t /

1VPAN Modélisation mathématique et Analyse numérique
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A GALERKIN APPROXIMATION FOR BEAMS 609

since P% o Pi — P\, P\ being a projection (P° dénotes the Z. ̂ projection).
By (2.33)

\\P2
h(Ph-I)DtU\\2_eh= \\P°h(P

2
h-I)Dtù\\2_2Ji

= (P°h(P2
h -I)Dtù,Th Pl{P2 -I)Dtù)

2 - I)Dtù,Th(P
2
h- I) Dtù)

= \\{PÏ-I)Dtùùff_2h,
so that

(234)

We also have

\\Pe
h{F{PhU)-F{y))\\_eh= \\P0

h(f(P2
hu)-f(u))\\_2h

so that, by Lemma 1,

(2.35) \\Pl{F{PhU)-F(U))\\_eh^C{\\u-P2
hu\\+h2\\u-Plu\\2)

Combining (2.34) and (2.35) we obtain

(2.36) P l / W - O U ,dT^Ch\ O^t^T.

In the same way as we obtained (2.35),

\\Pf,(F(PhU) - F(Uh))\\_e^ C(\\uh- P2
hu\\ + h2\\uh- P2

hu\\2)

^C(\\uh-P2
hu\\ +h*)

from Theorem 1, and we therefore have

(2.37) [ \\

+ [' \\PhU(T)-Uh(T)\\_ehdT=Ch*+ r

By (2.31), (2.32), (2.36) and (2.37),

vol. 23, n° 4, 1989



610 T. GEVECI, I. CHRISTIE

so that, by Gronwall's lemma

(2.38) \ \ *

This leads to (2.27) and the proof of the theorem is concluded.

Remark : From the proof it is clear that we also have

which, in turn, implies

where ||.||_2 dénotes the norm of the dual of H2, as in [6].

3. A FULLY DISCRETE SCHEME

Let us rewrite the semidiscrete Galerkin formulation (1.27) as

(3.1) (£>, Uh(t), <S>h)e + U{Uh(t), «.„) + P K ( 0 , 9*)i +

where
(u9v)x - (Dxu,Dxv) , \\u\\l= ( M , M

Denoting
rjn jin - 1

, n = ï, z, ... ,
k

where k is the time step, and

I Jn -4- T7n ~ ^
Ü% = _ 9 0% = [ui, ül] j

the application of Crank-Nicolson time discretization to (3.1) yields the
scheme

(3.2) (dtu
n
h, <s>h)e + n(ü%9 <D,) + p(s2,4>*)i + 7| |sS| | ; (aj, <P*)I = o ,

<PheShxSh, n = l , 2 , ... ,
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We modify (3.2) as follows :

(3.3) (3,ltf, * f c ) e

/ IK!î + H~l\\ \ n ^

4>ft6 5 A x 5 , , « = 1 ,2 , . . . , U°n = UOth,

The reason for this modification is the following :

LEMMA 2 : Energy, as defined by (1.18), is conserved by the modified
Crank-Nicholson scheme (3.3), i.e.,

Proof: Substituting 0"h for &h in (3.3),

(3.4) (d,U"h, Û"h)e

Since n(f7^, f^) = 0 ((1.26)), and

(3.4) yields

and this implies

i.e.

Just as in Ball's discussion of the existence of solutions of the original
équation [2], conservation of energy leads to the boundedness of

vol. 23, n° 4, 1989
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||Z>jW£|| and ||w£||, n = l,2, , in terms of the initial data and the
followmg convergence resuit can be estabhshed

THEO REM 3 If the hypotheses of Theorem 1 are valid,

\\U%- U(kn)\\e^C(k2+h2), kn^T,

where U%, n = 1,2, , is generaled by the modified Crank-Nicolson scheme
(3 3)

If the hypotheses of Theorem 2 are valid,

|| C/j; - U(kn)\\_e h
2 4

The proof will be omitted since it is lengthly but straightforward along the
hnes of the proofs of Theorem 1, Theorem 2, and Thomée [12, Ch 10],
thanks to Lemma 2
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