@article{M2AN_1989__23_3_433_0, author = {Ghidaglia, J. M.}, title = {Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic {Schr\"odinger} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {433--443}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {23}, number = {3}, year = {1989}, mrnumber = {1014484}, zbl = {0688.35084}, language = {en}, url = {http://www.numdam.org/item/M2AN_1989__23_3_433_0/} }
TY - JOUR AU - Ghidaglia, J. M. TI - Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1989 SP - 433 EP - 443 VL - 23 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1989__23_3_433_0/ LA - en ID - M2AN_1989__23_3_433_0 ER -
%0 Journal Article %A Ghidaglia, J. M. %T Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1989 %P 433-443 %V 23 %N 3 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1989__23_3_433_0/ %G en %F M2AN_1989__23_3_433_0
Ghidaglia, J. M. Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 23 (1989) no. 3, pp. 433-443. http://www.numdam.org/item/M2AN_1989__23_3_433_0/
[1] Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971) 1082-1088. | MR | Zbl
and ,[2] Global and local chaos in the pumped nonlinear Schrödinger equation, Physical Review Letters 52 (1984) 526-539.
and ,[3] Attractors representing turbulent flows, Memoirs of A.M.S. 53 (1985) n° 314. | MR | Zbl
, and ,[4] Comportement de dimension finie pour les équations de Schrödinger non linéaires faiblement amorties, C.R. Acad. Sci. Paris, t. 305, Série I (1987) 291-294. | MR | Zbl
,[5] Finite dimensional behavior for weakly damped driven Schrodinger equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 5 (1988) 365-405. | Numdam | MR | Zbl
,[6] Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical System in the long time, J. Diff. Equ. 74 (1988) 369-390. | MR | Zbl
,[7] Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physica 28D (1987) 282-304. | MR | Zbl
and ,[8] Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl. 66 (1987) 282-304. | MR
and[9] Low-dimensional chaos in a driven damped nonlinear Schrödinger equation, Physica 21D (1986) 381-393. | MR | Zbl
and ,[10] Transformation theory of nonlniear differential equations of the second order, Annals of Math. 45 (1944) 723-737. | MR | Zbl
,Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972) 62-39. | MR
and ,