@article{AIHPC_1988__5_4_365_0, author = {Ghidaglia, Jean-Michel}, title = {Finite dimensional behavior for weakly damped driven {Schr\"odinger} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {365--405}, publisher = {Gauthier-Villars}, volume = {5}, number = {4}, year = {1988}, mrnumber = {963105}, zbl = {0659.35019}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1988__5_4_365_0/} }
TY - JOUR AU - Ghidaglia, Jean-Michel TI - Finite dimensional behavior for weakly damped driven Schrödinger equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 1988 SP - 365 EP - 405 VL - 5 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1988__5_4_365_0/ LA - en ID - AIHPC_1988__5_4_365_0 ER -
Ghidaglia, Jean-Michel. Finite dimensional behavior for weakly damped driven Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Tome 5 (1988) no. 4, pp. 365-405. http://www.numdam.org/item/AIHPC_1988__5_4_365_0/
[1] Global and Local Chaos in the Pumped Nonlinear Schrödinger Equation, Physical Review Letters, Vol. 52, No. 7, 1984, pp. 526-539.
and ,[2] Espaces vectoriels topologiques, Masson, Paris, 1981. | MR | Zbl
,[3] Attractors Representing Turbulent Flows, Memoirs of A.M.S., Vol. 53, No. 314, 1985. | MR | Zbl
, and ,[4] Methods of Mathematical Physics, Vol. I, 1966, pp. 34- 36. Interscience, New-York. | MR | Zbl
and ,[5] Dimension de Hausdorff des attracteurs. C.R. Acad. Sci. Paris, T. 290, Series A, 1980, pp. 1135-1138. | MR | Zbl
and ,[6] Dimension of the Attractors Associated to the Ginzburg-Landau Partial Differential Equation, Physica, Vol. 28D, 1987, pp. 282- 304.. | MR | Zbl
and ,[7] Attractors for Damped Nonlinear Hyperbolic Equations, J. Math. Pures Appl., T. 66, 1987, pp. 273-319. | MR | Zbl
and ,[8] Regularity of the Solutions of Second Order Evolution Equations and Their Attractors, Annali della scuola Normale sup. di Pisa (in the Press). | Numdam | Zbl
and ,[9] Periodic Dynamical System with Application to Sine Gordon Equations: Estimates on the Fractal Dimension of the Universal Attractor, Proceedings of the Boulder Conference, B. NICOLAENKO Ed., Contemporary Math., A.M.S., Providence (to appear). | MR | Zbl
and ,[10] On the Blowing up of Solutions to the Cauchy Problem for Nonlinear Schrödinger Equations, J. Math. Phys., Vol. 18, No. 9, 1977, pp. 1794-1797. | MR | Zbl
,[11] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. | MR | Zbl
,[12] Nonhomogeneous Boundary value Problems and Applications, Springer, Berlin, 1972 (translated from Dunod, Paris, 1968).
and ,[13] Fractals: Form, Chance and Dimension, Freeman, San Francisco, 1977. | MR | Zbl
,[14] Low-Dimensional Chaos in a Driven Damped Nonlinear Schrödinger Equation, Physica, Vol. 21D, 1986, pp. 381-393. | MR | Zbl
and ,[15] Nonlinear Semi-Groups, Ann. Math., Vol. 78, 1963, pp. 339-364. | MR | Zbl
,[16] Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. | MR | Zbl
,[17] Non Existence of Global Solutions to the Cauchy Problem for the Damped Nonlinear Schrödinger Equations, S.I.A.M. J. Math. Anal., Vol. 15, 1984, pp. 357-366. | MR | Zbl
,[18] Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media, J.E.P.P., Vol. 34, 1972, pp. 62-69. | MR
and ,[19] Comportement de dimension finie pour les équations de Schrödinger non linéaires faiblement amorties, C.R. Acad. Sci. Paris, Series I, T. 305, 1987, pp. 291-294. | MR | Zbl
,[20] Weekly Damped Forced Kortewegde Vries Equations Behave as a Finite Dimensional Dynamical System in the Long Time, J. Diff. Equ. (in the Press). | Zbl
,