@article{M2AN_1987__21_4_679_0, author = {Nakao, Mitsuhiro T.}, title = {Superconvergence of the gradient of {Galerkin} approximations for elliptic problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {679--695}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {21}, number = {4}, year = {1987}, mrnumber = {921833}, zbl = {0642.65073}, language = {en}, url = {http://www.numdam.org/item/M2AN_1987__21_4_679_0/} }
TY - JOUR AU - Nakao, Mitsuhiro T. TI - Superconvergence of the gradient of Galerkin approximations for elliptic problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1987 SP - 679 EP - 695 VL - 21 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1987__21_4_679_0/ LA - en ID - M2AN_1987__21_4_679_0 ER -
%0 Journal Article %A Nakao, Mitsuhiro T. %T Superconvergence of the gradient of Galerkin approximations for elliptic problems %J ESAIM: Modélisation mathématique et analyse numérique %D 1987 %P 679-695 %V 21 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1987__21_4_679_0/ %G en %F M2AN_1987__21_4_679_0
Nakao, Mitsuhiro T. Superconvergence of the gradient of Galerkin approximations for elliptic problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 4, pp. 679-695. http://www.numdam.org/item/M2AN_1987__21_4_679_0/
[1] Sobolev spaces, Academic Press (1975) | MR | Zbl
,[2] A note on C° Galerkin methods for two point boundary problems, Numer. Math. 38 (1982) 447-453. | MR | Zbl
,[3] One-dimensional Galerkin methods and superconvergenceatinterior nodal points, SIAM J. Numer. Anal. 21 (1984) 101-110. | MR | Zbl
,[4] Superconvergence of finite element solutions and its derivatives, Numerical Mathematics, 2 (1981), 118-125 (Chinese). | MR | Zbl
,[5] finite element method scheme for onedimensional elliptic équations with high super convergence at the node, , Numer.Math. 46 (1985) 417-427. | MR | Zbl
& ,[6] Galerkin approximations for the two pointboundary problem using continuous pieeewise polynomial spaces, Numer. Math.22 (1974) 99-109. | MR | Zbl
, & ,[7] An L°° estimate and asuperconvergence resuit for a Galerkin method for elliptic équations based ontensor products of pieeewise polynomials, RAIRO 8 (1974) 61-66. | Numdam | MR | Zbl
& ,[8] Superconvergence phenomenon in the finite element method arising from averaging gradients, , Numer. Math. 45 (1984) 105-116. | MR | Zbl
& ,[9] Superconvergence of the gradient of finite element solutions, RAIRO Anal. Numer. 13 (1979), 139-166. | Numdam | MR | Zbl
& ,[10] Superconvergent recovery of the gradient from pieceewise linear finite-element approximations, IMA J. Numer. Anal. 5 (1985) 407-427. | MR | Zbl
,[11] Some superconvergence estimates for a Galerkin method for elliptic problems, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.), 31 (1984) 49-58. | MR | Zbl
,[12] error estimates and superconvergence results for a collocation--Galerkin method for elliptic equations, Memoirs of the Faculty of Science, Kyushu University, Ser. A, 39 (1985) 1-25. | MR | Zbl
,[13] Some superconvergence of Galerkin approximations for parabolic and hyperbolic problems in one space dimension, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.) 32 (1985) 1-14. | MR | Zbl
,[14] Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. Math. 47 (1985) 139-157. | MR | Zbl
,[15] Study of the rate of convergence of variational difference schemes for second order elliptic equations in a two dimensional field with a smooth boundary, USSR Comp. Math, and Math.hysics, 9 (1969) 158-183. | Zbl
and ,[16] Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437-445. | MR | Zbl
& ,[17] A weak discrete maximum principle and stability of the finite element method in on plane polygonal domains I, Math. Comp. 34 (1980) 77-99. | MR | Zbl
,[18] Uniform superconvergence estimates of derivatives for the finite elementmethod, Numerical Mathematics, 4 (1983) 311-318 (Chinese). | Zbl
,