Superconvergence of the gradient of finite element solutions
RAIRO. Analyse numérique, Tome 13 (1979) no. 2, pp. 139-166.
@article{M2AN_1979__13_2_139_0,
     author = {Lesaint, Pierre and Zlamal, Milos},
     title = {Superconvergence of the gradient of finite element solutions},
     journal = {RAIRO. Analyse num\'erique},
     pages = {139--166},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {13},
     number = {2},
     year = {1979},
     mrnumber = {533879},
     zbl = {0412.65051},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1979__13_2_139_0/}
}
TY  - JOUR
AU  - Lesaint, Pierre
AU  - Zlamal, Milos
TI  - Superconvergence of the gradient of finite element solutions
JO  - RAIRO. Analyse numérique
PY  - 1979
SP  - 139
EP  - 166
VL  - 13
IS  - 2
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1979__13_2_139_0/
LA  - en
ID  - M2AN_1979__13_2_139_0
ER  - 
%0 Journal Article
%A Lesaint, Pierre
%A Zlamal, Milos
%T Superconvergence of the gradient of finite element solutions
%J RAIRO. Analyse numérique
%D 1979
%P 139-166
%V 13
%N 2
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1979__13_2_139_0/
%G en
%F M2AN_1979__13_2_139_0
Lesaint, Pierre; Zlamal, Milos. Superconvergence of the gradient of finite element solutions. RAIRO. Analyse numérique, Tome 13 (1979) no. 2, pp. 139-166. http://www.numdam.org/item/M2AN_1979__13_2_139_0/

1 J H Bramble and S R Hilbert Bounds foi a Class of Lineai Functionals withApplications to Hermite Interpolation, Numer Math Vol 16, 1971 pp 362-369 | MR | Zbl

2 F Brezzi and L D Marini, On theNumencal Solution of Plate Bending Problems byHybnd Methods R A I R O Vol 9 R-3, 1975, pp 5-50 | Numdam | Zbl

3 P G Ciarlet and P A Raviart, The Combined Effect of Curved Boundanes and Numencal Integration in Isoparametnc Finite Element Methods The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A K Aziz, Ed , Academic Press, New York, 1972, pp 409-474 | MR | Zbl

4 P Davis and P Rabinowitz, Methods of Numencal Integiation, Academic Press, New York, 1975 | MR | Zbl

5 V Girault, Theory of Finite Différence Methods on Irregular Networks S I AMJ Numer Anal, Vol 11, 1974, pp 260-282 | MR | Zbl

6 P Lesaint, Sur la resolution des systèmes hyperboliques du premier ordre pardesmethodes d'éléments finis, Thesis, Université Pierre-et-Marie-Cune, Pans, 1975

7 J Necas, Les methodes directes en theorie des équations elliptiques Academia, Prague, 1967 | MR

8 O C Zienkiewicz, The Finite Element Method in Engineering Science, McGraw Hill London, 1972 | MR | Zbl

9 M Zlamal, Some Superconvergence Results in the Finite Element Method Mathematical Aspects of Finite Element Methods Springer Verlag, Berlin, Heidelberg, New York, 1977, pp 353-362 | MR | Zbl

10 M Zlamal, Superconveigence and Reduced Integration in the Finite Element Method, Math Comp (to appear) | MR | Zbl