@article{M2AN_1987__21_1_171_0, author = {\v{Z}en{\'\i}\v{s}ek, Alexander}, title = {How to avoid the use of {Green's} theorem in the {Ciarlet-Raviart} theory of variational crimes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {171--191}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {21}, number = {1}, year = {1987}, mrnumber = {882690}, zbl = {0623.65072}, language = {en}, url = {http://www.numdam.org/item/M2AN_1987__21_1_171_0/} }
TY - JOUR AU - Ženíšek, Alexander TI - How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1987 SP - 171 EP - 191 VL - 21 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1987__21_1_171_0/ LA - en ID - M2AN_1987__21_1_171_0 ER -
%0 Journal Article %A Ženíšek, Alexander %T How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes %J ESAIM: Modélisation mathématique et analyse numérique %D 1987 %P 171-191 %V 21 %N 1 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1987__21_1_171_0/ %G en %F M2AN_1987__21_1_171_0
Ženíšek, Alexander. How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 1, pp. 171-191. http://www.numdam.org/item/M2AN_1987__21_1_171_0/
[1] The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 409-474. | MR | Zbl
, ,[2] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. | MR | Zbl
,[3] On the density of smooth functions in certain subspaces of Sobolev space. Commentationes Mathematicae Universitatis Carolinae 14 (1973), 609-622. | MR | Zbl
,[4] Variational crimes in the finite element method. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 689-710. | MR | Zbl
,[5] An Analysis of the Finite Element Method. Prentice-Hall Inc., Englewood Cliffs, N. J., 1973. | MR | Zbl
, ,[6] The finite element method in domains with curved boundaries. Int. J. Numer. Meth. Engng. 5 (1973), 367-373. | MR | Zbl
,[7] Curved elements in the finite element method. I. SIAM J. Numer. nal. 10 (1973), 229-240. | MR | Zbl
,[8] Curved triangular finite Cm-elements. Api. Mat. 23 (1978), 346-377. | MR | Zbl
,[9] Discrete forms of Friedrichs' inequalities in the finite element method. R.A.I.R.O. Anal. num. 15 (1981), 265-286. | Numdam | MR | Zbl
,[10] Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat. (1981), 121-141. | MR | Zbl
,