How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes
ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 1, pp. 171-191.
@article{M2AN_1987__21_1_171_0,
     author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {How to avoid the use of {Green's} theorem in the {Ciarlet-Raviart} theory of variational crimes},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {171--191},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {21},
     number = {1},
     year = {1987},
     mrnumber = {882690},
     zbl = {0623.65072},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1987__21_1_171_0/}
}
TY  - JOUR
AU  - Ženíšek, Alexander
TI  - How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1987
SP  - 171
EP  - 191
VL  - 21
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1987__21_1_171_0/
LA  - en
ID  - M2AN_1987__21_1_171_0
ER  - 
%0 Journal Article
%A Ženíšek, Alexander
%T How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1987
%P 171-191
%V 21
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1987__21_1_171_0/
%G en
%F M2AN_1987__21_1_171_0
Ženíšek, Alexander. How to avoid the use of Green's theorem in the Ciarlet-Raviart theory of variational crimes. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 1, pp. 171-191. http://www.numdam.org/item/M2AN_1987__21_1_171_0/

[1] P. G. Ciarlet, P. A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 409-474. | MR | Zbl

[2] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. | MR | Zbl

[3] P. Doktor, On the density of smooth functions in certain subspaces of Sobolev space. Commentationes Mathematicae Universitatis Carolinae 14 (1973), 609-622. | MR | Zbl

[4] G. Strang, Variational crimes in the finite element method. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 689-710. | MR | Zbl

[5] G. Strang, G. Fix, An Analysis of the Finite Element Method. Prentice-Hall Inc., Englewood Cliffs, N. J., 1973. | MR | Zbl

[6] M. Zlamal, The finite element method in domains with curved boundaries. Int. J. Numer. Meth. Engng. 5 (1973), 367-373. | MR | Zbl

[7] M. Zlamal, Curved elements in the finite element method. I. SIAM J. Numer. nal. 10 (1973), 229-240. | MR | Zbl

[8] A. Zenisek, Curved triangular finite Cm-elements. Api. Mat. 23 (1978), 346-377. | MR | Zbl

[9] A. Zenisek, Discrete forms of Friedrichs' inequalities in the finite element method. R.A.I.R.O. Anal. num. 15 (1981), 265-286. | Numdam | MR | Zbl

[10] A. Zenisek, Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat. (1981), 121-141. | MR | Zbl