Discrete forms of Friedrichs' inequalities in the finite element method
RAIRO. Analyse numérique, Tome 15 (1981) no. 3, pp. 265-286.
@article{M2AN_1981__15_3_265_0,
     author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {Discrete forms of {Friedrichs'} inequalities in the finite element method},
     journal = {RAIRO. Analyse num\'erique},
     pages = {265--286},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {15},
     number = {3},
     year = {1981},
     mrnumber = {631681},
     zbl = {0475.65072},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1981__15_3_265_0/}
}
TY  - JOUR
AU  - Ženíšek, Alexander
TI  - Discrete forms of Friedrichs' inequalities in the finite element method
JO  - RAIRO. Analyse numérique
PY  - 1981
SP  - 265
EP  - 286
VL  - 15
IS  - 3
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1981__15_3_265_0/
LA  - en
ID  - M2AN_1981__15_3_265_0
ER  - 
%0 Journal Article
%A Ženíšek, Alexander
%T Discrete forms of Friedrichs' inequalities in the finite element method
%J RAIRO. Analyse numérique
%D 1981
%P 265-286
%V 15
%N 3
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1981__15_3_265_0/
%G en
%F M2AN_1981__15_3_265_0
Ženíšek, Alexander. Discrete forms of Friedrichs' inequalities in the finite element method. RAIRO. Analyse numérique, Tome 15 (1981) no. 3, pp. 265-286. http://www.numdam.org/item/M2AN_1981__15_3_265_0/

[1] J. H. Bramble, M. Zlämal, Triangular elements in the finite element method, Math. Comp. 24(1970), 809-820. | MR | Zbl

[2] P. G. Ciarlet, P. A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Diffe-rential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 409-474. | MR | Zbl

[3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. | MR | Zbl

[4] J. Hrebicek, A numerical analysis of a general biharmonic problem by the finite element method. (To appear.) | Zbl

[5] L Mansfield, Approximation of the boundary in the finite element solution of fourth order problems SIAM J Numer Anal 15 (1978), 568-579 | MR | Zbl

[6] J Necas, Les méthodes directes en théorie des équations elliptiques Academia, Prague, 1967 | MR

[7] M Zlamal, Curved elements in the finite element method I SIAM J Numer Anal 10 (1973), 229-240 | MR | Zbl

[8] M Zlamal, Curved elements in the finite element method II SIAM J Numer Anal 11 (1974), 347-362 | MR | Zbl

[9] A Zenisek, Curved triangular finite C m -elements Apl Mat 23 (1978), 346-377 | MR | Zbl

[10] A Zenisek, Nonhomogeneous boundary conditions and curved triangular finite elements Apl Mat 26(1981), 121-141 | MR | Zbl