Spectral perturbations in linear viscoelasticity of the Boltzmann type
ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 4, pp. 559-572.
@article{M2AN_1985__19_4_559_0,
     author = {Cainzos, J. and Lobo-Hidalgo, M.},
     title = {Spectral perturbations in linear viscoelasticity of the {Boltzmann} type},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {559--572},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {19},
     number = {4},
     year = {1985},
     mrnumber = {826224},
     zbl = {0598.73033},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1985__19_4_559_0/}
}
TY  - JOUR
AU  - Cainzos, J.
AU  - Lobo-Hidalgo, M.
TI  - Spectral perturbations in linear viscoelasticity of the Boltzmann type
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1985
SP  - 559
EP  - 572
VL  - 19
IS  - 4
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1985__19_4_559_0/
LA  - en
ID  - M2AN_1985__19_4_559_0
ER  - 
%0 Journal Article
%A Cainzos, J.
%A Lobo-Hidalgo, M.
%T Spectral perturbations in linear viscoelasticity of the Boltzmann type
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1985
%P 559-572
%V 19
%N 4
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1985__19_4_559_0/
%G en
%F M2AN_1985__19_4_559_0
Cainzos, J.; Lobo-Hidalgo, M. Spectral perturbations in linear viscoelasticity of the Boltzmann type. ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 4, pp. 559-572. http://www.numdam.org/item/M2AN_1985__19_4_559_0/

[1] S. Bochner and W. T. Martin, Several Complex Variables, Princeton, Univ.Press, Princeton (1948). | MR | Zbl

[2] C. M. Dafermos, An abstract Volterra equation with application to linear viscoelasticity, J. Diff. Equations, 7 (1970), pp. 554-569. | MR | Zbl

[3] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), pp. 297-308. | MR | Zbl

[4] C. M. Dafermos, Contraction semigroups and trend to equilibrium in continuum mechanics, Lect. Notes Math., 503, Springer, Berlin (1975), pp. 295-306. | Zbl

[5] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1966). | Zbl

[6] K. Knopp, Theory of Function, II, Dover, New York (1947). | MR

[7] M. Lobo-Hidalgo, Propriétés spectrales de certaines équations différentielles intervenant en viscoélasticité, Rend. Sem. Mat. Univ. Polit. Torino, 39 (1981), | MR | Zbl

[8] Ph. Noverraz, Fonctions plurisousharmoniques et analytiques dans les espaces vectoriels topologiques complexes, Ann. Inst. Fourier, t. XIX, fasc. 2 (1970),pp. 419-493. | Numdam | MR | Zbl

[9] R. Ohayon and E. Sanchez-Palencia, On the vibration problem for an elastic body surrounded by a slïghtly compressible fluid, R.A.I.R.O. Analyse Numérique,17, n° 3 (1983), pp. 311-326. | Numdam | MR | Zbl

[10] E. Sanchez-Palencia Fréquences de diffusion dans le problème de vibration d'un corps élastique plongé dans un fluide compressible de petite densité, C. R. Acad. Se. Paris, t. 295 (1982), pp. 197-200. | MR | Zbl

[11] N. Turbe, On two scales method for a class of integrodifferential equations appearing in viscoelasticity, Int. Jour. Engin. Sci. (1979), pp. 857-868. | MR | Zbl