@article{M2AN_1985__19_2_327_0, author = {Vanninathan, M. and Veerappa Gowda, G. D.}, title = {On the regularity of the variational solution of the {Tricomi} problem in the elliptic region}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {327--340}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {19}, number = {2}, year = {1985}, mrnumber = {802598}, zbl = {0573.35067}, language = {en}, url = {http://www.numdam.org/item/M2AN_1985__19_2_327_0/} }
TY - JOUR AU - Vanninathan, M. AU - Veerappa Gowda, G. D. TI - On the regularity of the variational solution of the Tricomi problem in the elliptic region JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1985 SP - 327 EP - 340 VL - 19 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1985__19_2_327_0/ LA - en ID - M2AN_1985__19_2_327_0 ER -
%0 Journal Article %A Vanninathan, M. %A Veerappa Gowda, G. D. %T On the regularity of the variational solution of the Tricomi problem in the elliptic region %J ESAIM: Modélisation mathématique et analyse numérique %D 1985 %P 327-340 %V 19 %N 2 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1985__19_2_327_0/ %G en %F M2AN_1985__19_2_327_0
Vanninathan, M.; Veerappa Gowda, G. D. On the regularity of the variational solution of the Tricomi problem in the elliptic region. ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 2, pp. 327-340. http://www.numdam.org/item/M2AN_1985__19_2_327_0/
[1] Handbook of Mathematical Functions, Dover Publications Inc., New York, 1970.
and ,[2] Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley, New York, 1958. | MR | Zbl
,[3] Equations of the Mixed Type, Macmillan, New York, 1964. | MR | Zbl
,[4] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. | MR | Zbl
,[5] A Finite Element Method for a boundary value problem of mixed type, SIAM J. Numer. Anal., 16 (5) (1979), pp. 756-778. | MR | Zbl
and ,[6] Transonic Aerodynamics, Academic Press, New York, 1968. | Zbl
and ,[7] Solutions Elémentaires de certaines Equations aux dérivées partielles du type mixte, Bull. Soc. Math. Fr. 81 (1953), pp. 145-174. | Numdam | MR | Zbl
, ,[8] Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solutions of Partial Differential Equations III. Synspade 1975, Bert Hubbord Ed., pp. 207-274. | MR | Zbl
,[9] Perturbation Theory for Linear Operators, Springer Verlag, New York, 1966. | MR | Zbl
,[10] Boundary problems for Elliptic Equations in Domains with conical or Angular points, Trans. Moscow. Math. Soc., Trudy, Vol. 16 (1967), (Russian), pp. 209-292. AMS Translations, 1968. | MR | Zbl
,[11] A uniqueness theorem for Frankl's problem, Comm. Pure Appl. Math., 7 (1954), pp. 697-703. | MR | Zbl
,[12] A weak solution for a system of equations of elliptic-hyperbolic type, Comm. Pure Appl. Math., 11 (1958), pp. 315-331. | MR | Zbl
,[13] Uniqueness for the analogue of the Neumann problem for Mixed Equations, The Michigan Math. J., 4 (1957), pp. 5-14. | MR | Zbl
,[14] Il profil alose ad arco di cerchio in flusso transonico continuo senzi incidenza, Annali di Mat. Pura ed applicat, 84 (1970), pp. 341-374. | Zbl
, ; ,[15] Boundary value problems for Equations of Mixed Type I, The Lavrentiev-Bitsadze Model, Comm. PDE, 2 (5) (1977), pp. 499-547. | MR | Zbl
,[16] A functional method of solving Tricomi Problem, Differencial'nye Uravneniya, 4 (1968), pp. 63-73 (Russian). | MR | Zbl
,[17] Functions of Mathematical Physics, van Nostrand, London, 1970. | Zbl
and ,[18] An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1973. | MR | Zbl
and ,[19] A Finite Element Method for the Tricomi Problem in the elliptic region, SIAM J. Numer. Anal., 14 (1977), pp. 1066-1077. | MR | Zbl
,[20] A Finite Element Method for the Tricomi Problem in the Elliptic Region, Thesis, Cornell University, Ithaca, N. Y. 1975.
,[21] Introduction to Pseudo-Differential Operators and Fourier Integral Operators, Vol. I, Plenum Press, NewYork, 1980. | Zbl
,[22] Imbedding and Extension theorems for a class of functions, II, Sib. Math. J., 7 (1966), pp. 409-418 (Russian). | MR
,[23] Approximation of Tricomi. Problem with Neumann Boundary Condition, To appear. | MR | Zbl
and ,