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ON THE REGULARITY OF THE VARIATIONAL SOLUTION
OF THE TRICOMI PROBLEM IN THE ELLIPTIC REGION (*)

par M. VANNINATHAN and G. D . VEERAPPA G O W D A (*)

Communiqué par R. GLOWINSKI

Résumé. — Nous considérons ici la solution faible du problème de Tricomi dans la région elliptique
avec une condition aux limites non locale sur la ligne parabolique. Nous discutons la régularité de ses
dérivées secondes dans des espaces de Sobolev avec poids. Nous prouvons V existence d'une singularité
monodimensionnelle et explicitons celle-ci Cela est utile pour V approximation par éléments finis de la
solution faible.

Abstract. — We consider the weak solution of the Tricomi problem in the elliptic région which
satisfies a non-local boundary condition on the parabolic Une. We discuss the regularity ofits second
order derivatives in weighted Sobolev spaces. The existence ofa one-dimensional space of singularity
is proved and it is explicity found. This is useful in îhefinite element approximation ofthe weak solu-
tion.

I. INTRODUCTION

It is well-known that transonic flows of gases are modelled by Tricomi
équation, Bers [2] :

Tu^yuxx+uyy = 0. (1.1)

We consider the above équation in abounded domain G in the plane U2,
Weset

Q = Gn {y > 0 } .

We assume that the boundary of G consists of three parts Z, F and Tx where
S lies in the upper half-plane, F and Fx are characteristics through (0, 0)
and (1, 0) respectively. We suppose further that

Q is convex , (1.2)

I coincides with the Unes x = 0 and x — 1 for sufficiently small y > 0. (1.3)

(*) Reçu en décembre 1983, révisé en mars 1983.
O T.I.F.R. Centre Indian Institute of Science Campus Bangalore 560012 India
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328 M. VANNINATHAN, G. D. VEERAPPA GOWDA

For details, see the following figure :

- (0, 1 )

The Tricomi problem consists of supplementing (1.1) with some boundary
conditions. We consider boundary conditions of Dirichlet type or of Neumann
type :

M =

du
dv -

<p on S,

on 2 ,

u = <j>

5 v r -

on F ,

<|) on F ,

(i

(i

• 4)

.5)

where

is the co-normal derivative associated with the operator T. v = (v ,̂ vy) dénotes
the outward unit normal vector on the boundary of G. Note that no condition
is prescribed on F1.

One of the approaches to the study of the Tricomi problem is to transform
the boundary condition (1.4) or (1.5) on F to the parabolic line y = 0 and
then concentrate on the problem in the elliptic région. The reader can, for
instance, look into Bitsadze [3] where this is done for Dirichlet boundary
condition. The resulting boundary condition on y = 0 is a non-local one.
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ON THE TRICOMI PROBLEM 329

Trangenstein [19] provided a variational formulation of the associated elliptic
sub-problem. The case of the Neumann boundary condition is treated in
Vanninathan and Veerappa Gowda [23],

The problems in the elliptic région, which are solved in a weak sensé are
as follows :

Tu = yuxx +Myy = 0 in Q,
u = 0 on E ,

d f u& °)d t
< 1.

(1.6)

Tu = yuxx +uyy = Q in

-=— = 0 on

, 0

Hère k and / are the positive constants given by

< 1

(1.7)

fe = 2 TE

31/6(r(l/3))3 '
2 l3

r(5/6)2

r(5/3) • (1.8)

The functions 4> in (1.6) and (1.7) (not necessarily the same) are obtained
from the corresponding <j> in (1.4) and (1.5) respectively. The weak solutions
of the problems (1.6), (1.7) are found in the space

= {ve L2(Q) ; / ' 2 vx e L2(Q), « e L2(O) } . (1.9)

This paper deals with the question of the regularity of the second order deri-
vatives of the weak solution when <)> is sufïïciently regular in (1.6) and (1.7).
This is of interest when we study finite element approximations of the weak
solution, cf. Ciarlet [4].

Similar study for the Lavrentiev-Bitsadze model was done by Osher [15],
Deacon and Osher [5], Existence and uniqueness of the weak solution for
the problem (1.1), (1.4), (1.5) on the whole domain G were proved by Mora-
wetz [13], [11], [12].

The question of regularity of the solution of Tricomi équation was object
of study of Germain, Bader [7], Nocilla et al [14] though not in the context
of finite element approximation.

The plan of the paper is as follows : In § 2, we prove the existence of one-
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330 M. VANNINATHAN, G. D. VEERAPPA GOWDA

dimensional space of singularity and we obtain it explicitly. In § 3, we state
some of the conséquences of the analysis done in § 2 in the context of the
flnite element approximatioa We conclude by passing some remarks on the
Neumann boundary condition.

2. SINGULARITY AT (1, 0)

In this section, we consider the problem (1.6) with Dirichlet boundary
condition. We rewrite this in a slightly generalized form :

uyy=f in Q,
u = 0 on E,

(2.1)

We introducé the space

#2(Q) = {ve if/(Q) ; / ' 2 v„ e L2(G), vxy e L2(Q), y~ '>2 v„ e L2(Q) } ,

in which we seek what we call strong solution. First of all, we have the fol-
lowing trace results : Uspenkii [22] :

x

v -» (v(x, 0), vy{x, 0)),

is continuous linear. Consider also the following spaces :

W = { v e Hfà) ; v = 0 on Z } ,
"2) = { f e 9XO) ; y~ ̂  ƒ e

Define now the operator 0* by

W^tfiy-1'2)* 0H
2'3(ï),

v -* (Tv, LD) ,

which is continuous by trace results stated above. The question discussed
below is the following : Given f e L2(j"1/2) and § e 0//2/3(l), does the weak
solution of the problem (2.1) belong to W? We show, in the sequel, that
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ON THE TRICOMI PROBLEM 331

this is not true in gênerai. In fact there exists a H* singularity near (1,0) due
to the lack of compatibility between the boundary conditions at that point
which we now proceed to find explicitly.

First of ail, it is clear that the possible singularity is on the x-axis. Because
of our assumptions (1.2), (1.3), there is no loss of generality in supposing Q
is the unit square. We try to adapt the standard method of fïnding the singu-
larity of the solution of a boundary value problem near a corner point, Gris-
vard [8]. Of course there are extra difficulties present in our problem like
variable coefficients, degeneracy, non-local boundary conditions etc. We
show below how we overcome these difficulties.

Let us now localize the problem around (1,0). In fact, it is sufficient to
construct a veH* but v $ H2 which has the following properties :

(i) TveL2(y~V2),

(ii) v&y) = 0, 0 < y < 1,

j <2'2)
We can then multiply by cut-off functions 0(x) and r[(y) which are one in a
small neighbourhood of x — 1 and y = 0 respectively to produce a function u
satisfying

(2.3)
u = 0 on S .

To see that

Lwe0tf2 /3(I), (2.4)

we use the fact that

Tx Jo (x - o2/3 ~ ( } ^ Jo (x - o2 /3 ° ( } ' ( }

which can be proved as follows.

Proof of {2.5) : Firstly, we have the following trace resuit, Uspenskii [22] :

(2.6)
v -> v(x, 0) ,

vol. 19, n° 12, 1985.
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is linear and continuous. Next, since extension by zero is a continuous linear
opération from Hlf3(ï) -> H1!3(M\ we can rewrite (2.5) as follows ;

d f 9(Q v(t, 0) dt d Çx v(t,O)dt 2/3

35 J_ (x-o2/3 ( ) ^ L ( ^ ö ^ ° (I)- (2*7)

We now note that the operator

v(t) dt

is a pseudo differential operator of order 2/3. In fact

Cjj- f ^ ^ 2 / 3 ) ® - ni/3)(/^)2/3 fi© for ail «Efffi. (2.8)

See, for instance, Trangenstein [20]. The synibol is not c00 at the origin but
this will not trouble us. Applying the product rule for such operators, Trê-
ves [21], and their continuity between Sobolev spaces, we can conclude that
the right side of (2.7) is in H2/3(I). That this is in OH2}3(1) follows if we choose
a vanishing 9(x) in a neighbourhood of x = 0. Thus (2.5) is proved and
hence (2.4).

Construction of v satisfying (2.2)

First we consider the équation

yvxx + vyy = o.

Make the following change of variables as given in Ferrari and Tricomi [6] :

x = x, z = jy312 .

This transforms the above équation into its canonical form :

vxx + vzz + —z vz = 0 .

Now introducé the polar coordinates at (1, 0).

x = y cos 9 , z = y sin 9 , y = [(x - l)2 + z2]1 /2 , | ^ 9 ^ TC .

It can be shown that the variables, y, 9 can be separated in the resulting equa-
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ON THE TRICOMI PROBLEM 333

tion. Writing v(y, 9> = X(y) 7(8), we get the following équations for X(y)

and 7(8),

(y) + TZ
 x

 (Y) — 2 x(y) = ° y (2.9)

Y"(0) + | cot 0F(8) + À, 7(9) = 0, (2,10)

where X is a constant.
Note that (2.9) is an Euler équation and so we can search a solution of the

form

y^ (2 Al)

We get a relation Connecting |i and X :

X = |i(n + 1/3). (2.12)

In order to solve for F, we need to supplement (2.10) with boundary condi-
tions. The condition at 9 = TC/2 reads as follows :

y(n/2) = 0. (2.13)

The condition at 0 = % can be obtained by manipulations on the operator
occuring in (2.2) (iii). This leads us to the hypergeometric functions defmed by

fft-i(i _ ty-0-1^ - ztyadt (2.14)

for Re c > Re b > 0 and for z in the complex plane with a eut from 1 to oo
along the positive real axis. See for instance Spain and Smith [17]. We remark
that the condition veH* - H y will imply that

- | < ji < | , (2.15)

(sin9)1/3 Y(Q)2d& < oo , (2.16)

f (sine)1/3 Yf(Q)2dQ < oo , (2.17)

v ÎI/2
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and hence Y(n) is well-defined. The main properties of the hypergeometric
functions used in the calculations are given below :

(i) If Re (c — a — b) > 0 , then lim F(a, b9 c, z) exists »

(ii) -jzF(a, b, c, z) = ^ F(a + l,b + l,c + 1, z),

(iii) F(a, b, c, z) = (1 - zf-0'" F(c - a,c - b, c, z).

Using all these, we find

Lv = lim f - ^Y / 3 (sin 6)1/3 y"'2'3 Y'(6) -

> (2.18)

_ l i i f i _ vW3 ^~ 2 / 3 F(M 4 - - i I 1
4 \ 3 ' 3 ' 3

Thus it is natural to impose the foUowing condition on F :

l im( - 3/2)1'3 (sin G)1'3 Y'(6) + ^FL + | , | , | , l\ Y(n) = 0 . (2.19)

Thus the variables y, 9 can be separated in the boundary condition also.
Consider now the System of équations (2.10), (2.13) and (2.19) with \x as

a parameter. We show below that there exists a value of \i such that

0 < ^ i<2 /3 , (2.20)

for which the System admits a non-zero solution 7(9). In order to fulfil the
condition (2,2) (iii), we must show that the error term E(y) viz,

E(y) = 1(1 - y)'2/3

(2.21)

has the foUowing regularity

E(j)eH2t\\) near y = 0. (2.22)
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We give some indications as to how this can be achieved. Take, for instance,
the second term on the right side of (2.21) which is more troublesome. Put

Then

G(y)-G(Q) = f ^
Jo

f1 /ƒ r1

-j- G(0y) dQ = y G'(Qy) .
Jo Jo

Thus it is enough to show that

Jo

f

10

4 , 1 , 2 , 1 _ e y

near y = 0 .

(2.23)

near y = 0 .

(2.24)

This can be shown by observing that the first derivative of these functions
are in i/~1/3 near y = 0. In fact, the first order derivatives involve a singu-
larity of the form y^"2/3 near y = 0. The inequality (2.20) can be used in
pro ving these assertions.

Let us now turn to the resolution of 7(0). We make one more change of
variables. Introducé t by substituting

t = - (1 + cos0).

This takes the system (2.10), (2.13) and (2.19) to the following one, z(t) = 7(0) :

r
/(l - (H-]«
lira 31 '3 t2'3 z'(t) + \

0<t<±, 2(1/2) = 0 ,

+ | , | , | , l ) 2 ( 0 ) = 0 .

(2.25)

The question of existence of non-zero solution 2{i) to the above System is
answered in the following resuit and there by construction of v satisfying
(2.2) is finished.

vol. 19, rfi 2, 1985



336 M. VANNINATHAN, G D. VEERAPPA GOWDA

LEMMA : There exists a ji, 0 < \i < 2/3 for which (2.25) admits a non-zero
solution.

Proof : The équation in (2.25) is the hypergeometric équation and the two
independent solutions are provided by

I I f

We can then easily write down the necessary and sufficient condition in order
that (2.25) has a non-zero solution. This is given as follows :

3"2'3 A (Ijl) - fiifcF/V + \A,\, lWl/2) = 0.M 4 l $ $ $ J *

This can be simplifïed further by using some properties of A^ and B^. See
Abramowitz and Stegun [1] p. 556. We get the following non-linear équation
for \i :

r(2/3) 9 k r(4/3) r(7/3) 1X2/3 - \i)

4 22/3r(^-^)r(^)r(i-n)

= 0. (2.26)

We can easily see that there is a value of |i in the interval 0 < [i < 2/3 which
is a solution of (2.26). In f act, the left side of (2.26) as a function of \i is conti-
nuous in the interval 0 < \i < 2/3 taking positive value at \i = 0 and it goes
to — oo as \i -> 2/3.

For the value of k given by (1.8), the équation (2.26) can be solved exactly
and the root is found to be

ti = 1/3. (2.27)

Few questions now arise naturally. Is there any other value of \i satisfying
(2.26) giving another singularity ? It is possible to prove the uniqueness of
the solution of (2.26) in the interval 0 < n < 2/3. It can also be seen that
there is no root of (2.26) in 2/3 ^ \i ̂  5/6. Is there any other form of singu-
larity at (1, 0) ? What about the point (0, 0) ? One can think of applying the
method of Kondratiev [10]. But the following simple procedure bypasses this
and provides an answer to all the questions above. We remark that the uni-
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queness question discussed above is not the same as the one proved by Pashko-
viskii [16].

We consider the map SP defined earlier :

=(Tv,Lv) for veW.

THEOREM : ëP is a continuons, one-to-one operator with closed range and the
range has codimension exactly equal to uniiy.

Proof: Pashkoviskii [16] has proved the foliowing inequality

II v \\w ^ c(\\ Tv || + || Lv ||) for all v e W. (2.28)

This shows that SP is one-to-one and has closed range. Now define the ope-
rators &Q for 0 ^ 0 ^ 1 as follows :

where
x v(t, 0) dt

Aninequalitysimilarto(2.28)canbeestablishedfor^e.Thus{^e },0 < 0 < 1
defines a homotopy of semi-Fredholm operators between ^*0 and ^ x = 0.
Since the index is invariant under homotopy Kato [9], we get that the co-
dimensions of the ranges of 9 and 0>o are equal.

Let us see what is the problem corresponding to ^ 0 : given g e L2(y~112).
\\f e 0 i / 2 / 3 ( ï ) , find v e W satisfying

Tv = g in Q ,

v = 0 on E ,

vy(x, 0) = y\f(x) on I .

A method for solving similar problems is given in Vanninathan and Veerappa
Gowda [23]. The result is that v e W if and only if v|/ e 0H

2/3(l). with \|/(1) = 0.
This subspace has co-dimension exactly equal to one in 0H

2/3(l). This complè-
tes the proof of the theorem.

Thus we reach the following conclusion : there is exactly one-dimensional
space of H* singularity and this is situated at (1, 0). Also this has been found
explicity.

vol. 19, n° 2, 1985
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3. FINITE ELEMENT APPROXIMATION

A weak formulation and a fïnite element method for (2.1) has been described
by Trangenstein [19]. The présence of singularity at (1, 0) has been slightly
overlooked in the above mentioned paper. We content ourselves by simply
observing certain conséquences of the conclusion reached in § 2.

We use Qj finite éléments, cf. Ciarlet [4] at least for three reasons :

a) It is a c° finite element and so the finite element space Vh is a subspace

b) While passing from the référence finite element to an arbitrary finite
element, since there exists a diagonal affine map, the space H$ is preserved.
This is not true if we use triangular éléments.

c) To prove the results of the type Bramble-Hilbert Lemma, we need the
inclusion Hj -• L2 to be compact. This is proved only for rectangular éléments.

If uh dénotes the approximate solution in Vh then we have the convergence
resuit :

- •0 as h -* 0 .

In gênerai, there is no order of convergence. However, if we augment our
finite element space Vh by the inclusion of the one dimensional space of singu-
larity obtained in § 2 and assume ƒ e L2(j"1/2) and cj) e 0i/2/3(I), then it is
standard, Strang and Fix [18], that we obtain 0(/z) estimate for the error in
H* norm.

4. REMARKS ON NEUMANN CONDITION

We pass certain remarks about the Neumann problem (1.7). A resuit
analogous to the Theorem in § 2 is true in this case and it is proved in Vanni-
nathan and Veerappa Gowda [23]. This means that there is a compatibility
condition between the data ƒ and <]>, though it is difficult to obtain it ex'plicitly.
For this, one may have to solve the dual problems in a weak sensé.
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