On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order
ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 1, pp. 65-87.
@article{M2AN_1985__19_1_65_0,
     author = {Rannacher, R. and Wendland, W. L.},
     title = {On the order of pointwise convergence of some boundary element methods. {Part} {I.} {Operators} of negative and zero order},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {65--87},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {19},
     number = {1},
     year = {1985},
     mrnumber = {813689},
     zbl = {0579.65147},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1985__19_1_65_0/}
}
TY  - JOUR
AU  - Rannacher, R.
AU  - Wendland, W. L.
TI  - On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1985
SP  - 65
EP  - 87
VL  - 19
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1985__19_1_65_0/
LA  - en
ID  - M2AN_1985__19_1_65_0
ER  - 
%0 Journal Article
%A Rannacher, R.
%A Wendland, W. L.
%T On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1985
%P 65-87
%V 19
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1985__19_1_65_0/
%G en
%F M2AN_1985__19_1_65_0
Rannacher, R.; Wendland, W. L. On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order. ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 1, pp. 65-87. http://www.numdam.org/item/M2AN_1985__19_1_65_0/

[1] M S Agranovich, Spectral properties of diffraction problems In The General Method of Natural Vibrations in Diffraction Theory (Russian) (N N Voitovic, K Z Katzenellenbaum and A N Sivov) Izdat Nauka Moscow 1977 | MR

[2] D Arnold and W L Wendland On the asymptotic convergence of collocation methods Math Comp in print (1983) | MR | Zbl

[3] J P Aubin, Approximation of Elliptic Boundary-Value Problems Wiley-Interscience New York 1972 | MR | Zbl

[4] I Babuska and A K Aziz, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A K Aziz ed ) pp 3-359, Academic Press, New York 1972 | MR | Zbl

[5] T Dupont and R Scott, Constructive polynomial approximation In « Recent Advances in Numerical Analysis » (C de Boor ed ), Proc at MRC Madison Wisconsin, May 1978 | Zbl

[6] G I Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations Trans Math Mon Amer Math Soc Providence, Rhode Island 1981 1981 | MR | Zbl

[7] J Frehse and R Rannacher Eine L 1 -Fehlerabschatzung fur diskrete Grundlosungen in der Methode der finiten Elemente In « Finite Elemente » Tagungsband Bonn Math Schr 89, 92-114 (1976) | MR | Zbl

[8] L Hormander, Pseudo-differential operators and non-elliptic boundary problems Annals Math 83, 129-209 (1966) | MR | Zbl

[9] L Hormander, Fourier intégral operators I Acta mathematica 127, 79-183 (1971) | MR | Zbl

[10] G C Hsiao, P Kopp and W L Wendland, A Galerkin collocation method for some integral equations of the first kind Computing 25, 89-130 (1980) | MR | Zbl

[11] G C Hsiao and W L Wendland, Afinite element method for some integral equations of the first kind J Math Anal Appl 58, 449-481 (1977) | MR | Zbl

[12] G C Hsiao and W L Wendland The Aubin-Nitsche lemma for integral equations Journal of Integral Equations 3, 299-315 (1981) | MR | Zbl

[13] G C Hsiao and W L Wendland Super-approximation for boundary integral methods In Advances in Computer Methods for Partial Differential Equations IV (ed R Vichnevetsky, R S Stepleman), pp 200-206, IMACS, Dept Comp Sc Rutgers Univ New Brunswick 1981

[14] E Martensen Potentialtheorie B G Teubner Stuttgart 1968 | MR | Zbl

[15] S G Michlin, Vorlesungen uber lineare Integralgleichungen Verl der Wiss Berlin 1962 | MR

[16] F Natterer, Uber die punktweise Konvergenz finiter Elemente Numer Math 25 67-77 (1975) | MR | Zbl

[17] J C Nedelec, Approximation des équations integrales en mecanique et en physique Lecture Notes, Centre de Math Appl Ecole Polytechnique, 91128 Palaiseau, France, 1977

[18] J C Nedelec and J Planchard, Une methode variationnelle d'elements finis pour la resolution numérique d un probleme exterieur des R3 Revue Franc Automatique, Inf Rech Oper R 3, 105-129 (1973) | Numdam | MR | Zbl

[19] J A Nitsche , L -convergence of finite element approximation Second Conference on Finite Elements, Rennes, France, 1975 | MR | Zbl

[20] P M Prenter, Splines and Variational Methods John Wiley & Sons, New York 1975 | MR | Zbl

[21] R Rannacher, Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem Manuscripta math 19, 401-416(1976) | MR | Zbl

[22] J Saranen and W L Wendland, One the asymptotic convergence of collocation methods with spline functions of even degree, to appear in Math Comp 1985 | MR | Zbl

[23] A H Schatz and L B Wahlbin, Maximum norm error estimates in the finite element method for Poisson equation on plane domains with corners Math Comp 32, 73-109 (1978) | MR | Zbl

[24] R Scott Optimal L -estimates for the finite element method on irregular meshes Math Comp 30, 681-697 (1976) | MR | Zbl

[25] E Stephan, Solution procedures for interface problems in acoustics and electro-magnetics In Theoretical Acoustics and Numerical Techniques (ed P Filippi), CISM Courses 277, Springer-Verlag, Wien, New York, 291-348 (1983) | MR | Zbl

[26] E Stephan and W L Wendland, Remarks to Galerkin and least squares methods with finite elements for general elliptic problem Manuscripta Geodaetica 1, 93-123 (1976) and Springer Lecture Notes m Math 564, 461-471 (1976) | MR | Zbl

[27] G Strang, Approximation in the finite element method Num Math 19, (1972) | MR | Zbl

[28] M Taylor, Pseudodifferential Operators Princeton Univ Press, Princeton N J 1981 | MR | Zbl

[29] F Trêves, Pseudodifferential Operators Plenum Press New York, London 1980 | MR

[30] W L Wendland, On applications and the convergence of boundary integral methods In Treatment of Integral Equations by Numerical Methods (ed T H Baker G F Miller), pp 463-476, Academic Press, London 1982 | MR | Zbl

[31] W L Wendland Boundary element methods and their asymptotic convergence In Theoretical Acoustics and Numerical Techniques (ed P Filippi), CISM Courses 277 Springer-Verlag, Wien, New York, 135 216 (1983) | MR | Zbl