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TWO MIXED FINITE ELEMENT METHODS
FOR THE SIMPLY SUPPORTED PLATE PROBLEM (*)

by James H. BRAMBLE 0) and Richard S. FALK (2)

Résumé. — On analyse deux méthodes d'éléments finis mixtes pour Vapproximation du modèle
biharmonique du problème d'une plaque simplement appuyée. On présente ensuite un procédé numé-
rique efficace pour résoudre le système d'équations linéaires correspondant

Abstract — Two mixed finite element methods are analyzedfor the approximation of the bihar-
monic model of the simply supported plate problem. An efficient numerical procedure for solving
the resulting linear System of équations is then presented.

1. INTRODUCTION

In this paper we wish to study two mixed finite élément methods for the
approximation of a boundary value problem modeling a simply supported
plate, i.e. we ctmsider the biharmonic équation

A2u=f in il (1.1)

subject to the boundary conditions

Au - x(uss + Kiïn) = 0 (1.2)

and

u = 0 on F , (1.3)

where fi is a bounded domain in 1R2 with smooth boundary r , ƒ is a given
fonction, K is the curvature of fi, 1 — x is Poisson's ratio, and iïs and iïn dénote
the tangential and exterior normal derivatives of ü respectively along F.
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338 J. H. BRAMBLE, R. S. FALK

In the standard variational formulation of (1.1)-(1.3), (1.2) is a natural
boundary condition and so the solution ü may be characterized by

Find üeH2(Q)nH^(Q) (1.4)

such that

(Au, Au) - T{(WXXÏ vyy) + (uyy, vxx) - 2(üxyi vxy)} = (ƒ v)

for all v e H2(fl) n

(where (., .) dénotes the I 2 (^ ) inner product).
If one bases a finite element method on this variational principle, one is

faced with the difficulty of constructing subspaces of H2(Q) n HQ(Q). This
requires the use of Cl finite éléments which must vanish on 3Q.

By using the mixed method technique of introducing new independent
variables (e.g. w = — Aü\ we are able to reformulate this problem as a lower
order System of équations. This will allow us to define a conforming finite
element method using only C° finite éléments.

The first approximation scheme we will discuss will be based on the following
variational formulation of (1.1)-(1.3). Let <., .> dénote the L2(Y) inner
product and also the pairing between HS(T) and H~S(T) and let

^«(w, v) = (grad u, grad v) -f a < u, v > ,

where a is chosen sufficiently large so that 2 a -f K > 0. We will consider :

Problem ÇP) : Find (2, M>, k, a) e H\Q) x H\a) x H3/2(T) x /f"1 / 2(r)
such that

^ « ( » , v ) = a » ) + <a, i ;>-T.<A. I , i ; ï> for all veH\Q), (1.5)

AJfi,z) =(w,z) + <^ ; 2> for all z e / f ^ O ) , (1.6)

T < X [ X - â i i l , ^ > - T < e , , ^ > + <)v 9 | i>=0 forall ^ e i / 3 / 2 ( r ) , (1.7)

and
< w 5 p > = 0 forall p e ^ " 1 / 2 ( r ) - (1.8)

To understand the relation between Problem (P) and the biharmonic
problem (1.1)-(1.3), observe first that équation (1.5) is the weak form of the
boundary value problem

— Aw —f in Q

-—h aw = a -h xXss on T,

R.A.I.R.O. Analyse numérique/Numerical Analysis



SIMPLY SUPPORTED PLATE PROBLEM 339

and équation (1.6) is the weak form of the boundary value problem

— Aw = w in fi

du „ .
- — j - au = X on F .
dn

Equations (1.7) and (1.8) give the boundary conditions

x[K(X - au) + üss] + w = 0 on r

and

w = 0 on F .

Suppose now that for iï a smooth solution of (1.1)-(1.3) we set

w = - AM, (1.9)

X =^- + aiï (1.10)

and

a = - ^ Afi + a Aiï + T(W„SS + aüss) . (1.11)

Then from (1.1), - Avv = ƒ and by (1.9)-(l .11)

CT = = =â^v î y + ai^~ xXss

which implies that (2, w, X, a) satisfies (1.5). Now from (1.9) and (1.10), it
easily follows that (iï, w9 X, a) satisfies (1.6). Using (1.2), (1.9), and (1.10)
we get that w + x[iïss + K(X - au)] = 0 on F and so (1.7) is satisfied.
Finally, (1.3) implies (1.8) so that (ü, w, À,, a), with w9 X, a defined by (1.9)-
(1.11) is a solution of Problem (P).

When the curvature K of Q is strictly positive we are able to give a much
sïmpler variational formulation of (1. i)-(l .3).

Problem (P*) : Find (iï, w, a) e H\Q) x H\Q) x H~ 1/2(F) such that

A«(w,v) =(f,v) -f <o,v> forall VEH\Q), (1.12)

A.(iï, z) = (w, z) - / ^ , z \ forall zeH\ÇÏ), (1.13)

and

<ff, p> = 0 VpGi/-1/2(F). (1.14)

vol. 17, n° 4, 1983



340 J. H. BRAMBLE, R. S. FALK

To understand the relation between Problem (P*) and the biharmonic
problem (1.1)-(1.3) observe first that équation (1.12) is the weak form of the
boundary value problem

— Aw = ƒ in Q

dw
——(- aw = a on F ,
dn

and équation (1.13) is the weak form of the boundary value problem

— Au = w in Q

du ^ w _
-=- + au = rr on T .on xK

Equation (1.14) gives the boundary condition ü = 0 on F.
Suppose now that for ü a smooth solution of (1.1)-{1.3) we set

w — - Au (1.15)

and

o = - Ur- Au + a Aw . (1.16)

Then by (1.1), - Aw = ƒ and by (1.15)-{l. 16), a = •*- w -f ai? which implies

that (w, w, a) satisfies (1.12). Now from (1.3), üss = 0 on F so that by (1.2)

and (1.15) ^— + au = —. Hence (1.13) is satisfied. Finally (1.3) implies

on xA.
(1.14) so that (w, w, o) with w and a defmed by (1.15)-(1.16) is a solution of
Problem (P*).

It is the purpose of this paper to analyze finite element methods for the
approximation of the biharmonic problem (1.1)-(1.3) based on the two varia-
tional formulations (P) and (P*). Once these approximation schemes are
developed and error estimâtes derived, we shall then show how the resulting
approximations can be obtained as the limit of a rapidly converging séquence
of fonctions requiring only the numerical solution of second order problems
with natural boundary conditions. The techniques used to obtain these results
are based on those in Bramble [7], where analogous results are obtained for
the second order Dirichlet problem.

We also note that many of the ideas used in this paper appear previously in
several sources. The use of Lagrange multipliers was first analyzed by Babuska
[3] for the second order Dirichlet problem. An analysis of a mixed finite element
method for the biharmonic model of the clamped plate problem is given by

R.A.LR.O. Analyse numérique/Numerical Analysis



SIMPLY SUPPORTED PLATE PROBLEM 341

Ciarlet and Raviart in [8] and the idea of the solution of this problem using an
itération scheme requiring the solution of second order Dirichlet problems at
each itération is discussed in Ciarlet and Glowinski [9]. Further ideas in this
direction can be found in Glowinski and Pironneau [11]. In Falk [10] a mixed
finite element method is presented for the biharmonic problem with Dirichlet
type boundary conditions whose solution involves an itération scheme requir-
ing the solution of two Neumann problems at each itération.

An outline of the paper is as follows. In Section 2 we introducé the notation
to be used and then state and prove some a priori estimâtes that will be needed
in the subséquent analysis. Section 3 defïnes the approximating subspaces
to be used in the finite element method and collects some results on the approxi-
mation properties of these subspaces. In Section 4, we define the approximation
scheme for Problem (P) and prove some additional a priori estimâtes ana-
logous to those in Section 2. Section 5 then contains the dérivation of error
estimâtes for Problem (P).

In Sections 6, 7, and 8 we analyze a finite element method based on the
variational formulation (P*) for the case where Q has strictly positive cur-
vature. Section 6 has some preliminary results for this case, Section 7 discusses
the finite element approximation scheme, and Section 8 contains the error
estimâtes. Finally in Section 9 we discuss efficient computational procedures
to solve our approximate problems.

2. NOTATION AND PRELIMINARY RESULTS

For s ^ 0 let H%Q) and HS(T) dénote the Sobolev spaces of order s of
functions on Q atid F respectively, with associated norms ||. ||s and |.|s respec-
tively (cf. [12]). For s < 0 let HS(Q) and HS(T) be the respective duals of H'XQ)
and H~SÇT) with the usual dual norm.

To simplify the exposition of this paper we shall also use the norm |||.|||s
defined on Hs+ 1/2(Q) n HS(T) by

III 4> III, = I H + I14HL+1/2-

In order to analyze the mixed formulation denoted by Problem (P) and its
finite element approximation it will be convenient to introducé the following
notation.

Define operators

T:Hs(Q)-> HS+2(Q)

and

vol. 17, n° 4, 1983



342 J. H. BRAMBLE, R. S. FALK

by AJJfv) = (ƒ,!>) for all veC*><&)

and Aa(G<j, v) = < o, v > for all v e C°°(Q) ,

i.e. Tf is the weak solution of the boundary value problem

-A(Tf)=f in Q

jt(Tf) + *(Tf) = 0 on T

and G<J is the weak solution of the boundary value problem

- A(Ga) = 0 in Q

^(G<J) + a(Ga) = a on I \

We remark that it is well known (cf. [13]) that T and G satisfy the estimâtes

\\Tf\\s+2^C\\f\\s (2 Aa)

and

C | a | s (2.16)

for all real s, where C is a constant independent of a and f
Using (2.1) we can also prove :

LEMMA 2 . 1 : There exists a constant C independent of a andf such that for
all real s

\Tf | 1 / 2 _ , < C || ƒ « _ ! _ , (2.2a)

| G a | 1 / 2 _ , < C | a | _ 1 / 2 _ s . (2.26)

Proof : For 5 < 1/2 (2.2) follows from (2.1) by standard trace theorems.
For 5 ^ 1/2 we use the définitions of T and G to write :

< Tf p > = ^ ( G p , 7/) = (ƒ Gp) ^ || ƒ [|_x_, II Gp | |1 + s

and

< Ga, p > = Aa(G<j, Gp) = < a, Gp > ^ | a |_1 / 2_ s | Gp | 1 / 2 + s .

Hence from (2.1) we get

7YI _ SUD1J l l /2 -s — b U P I ft I
p e H s = l / 2 | P Is—s— 1/2

c, ƒ , . , . .

R.A.LR.O. Analyse numérique/Numerical Analysis



SIMPLY SUPPORTED PLATE PROBLEM 343

and since 1/2 + s > 0? we can use (2.2ü?) to get

| G a | 1 / 2 . s = sup 2 I P Is-1/2

sup ' g ' - y -
I P|J€Hs~i/2 I P Is-1/2

Using these définitions we see from (1.5) that

w = Tf + G[o + x\J (2.3)

and from (1.6) that

ü = Tw + GA, = T2 ƒ + TG[G + xXJ + GX. (2.4)

Let us now defme

w(X, o) = G[o + xXJ (2.5)

and

u(k, o) = TG[o + xXss] + GX. (2.6)

Then w = TJ + w(^ a)

and ü = T2 f + w(X, a)

so that Problem (P) can be restated in the form :

Problem (f) : Find (X, a) G H3i2(T) x H" 1/2(r) such that

a)] + xuss(K a) + w(^ o) = xKaT2 ƒ - t(T2 f)ss - Tf

(2.7)

and
CT)= - T 2 / . (2.8)

It will be from this point of view that we will approximate ü> i.e. we will
approximate Gf T9 o, and X to obtain an approximation to ü

The analysis of the fmite element method for the approximation of the mixed
formulation of the biharmonic problem given in Problem (P) will depend
heavily on the study of the function

u(Xt a) = TG[a + xXJ + GX.

vol. 17, n° 4, 1983



344 J. H. BRAMBLE, R. S. FALK

From the définitions of T and G it easily follows that u(k, a) is the solution
of the biharmonic problem :

Problem (Q) : Given(A, a) e H3j2(T) xH~ 1/2(F), find u e H2(O) satisfying

A2u=Q in Q (2.9)

|^H-aw = X on T (2.10)

- T - A W - a A w - t[«nss + awss] = or on F . (2.11)

In this section we wish to prove several a priori estimâtes for the solution
of Problem (Q). To do so we fïrst state some Green's formulas and Standard
a priori estimâtes for solutions of the biharmonic équation A2u = 0.
For u, v e H2(Q) defme a bilinear form E(u, v) by

E(u, v) = (Au, Av) - x{(uxx9 vyy) + (wyy, vxx) - 2(uxy9 vxy)}. (2.12)

We then have the following Green's formula (see e.g, [14]).

E(u, v) = (A\ „) - ^ J-A« + T !(«„ -

+ ^ Aw - x(«ss + Ku„), ̂  y (2.13)

Defining

M(M) = AM - T(«SS + XM„) (2.14)

and

V{u) = ^ A u + T | ( « s n - K«s) (2.15)

and observing the symmetry of E(u, v) we obtain for all u, v satisfying
A2u = A2i; = 0 that

/ ^ \ / ^ \ (2.16)

Setting u = u in (2.12) we also easily obtain that for all u e H2(ü)

E(u, u) = (Au, Au) - 2 x(uxx, uyy) + 2 x(uxy, uxy)

= (1 - x) (Au, Au) + x{(uxx, UXX) -f (uyy, uyy) + 2(uxy, uxy)}.

R.A.I.R.O. Analyse numérique/Numerical Analysis



SÏMPLY SUPPORTED PLATE PROBLEM 345

Hence for 0 < T < 1,

X \\D«u\\2
0^

l-E(u,u). (2.17)
W = 2 X

A second standard Green's formula for solutions of the biharmonic équa-
tion A2w — 0 is given by

(Au, Av) = (A2w, 17) - / ^ AM, i? \ + / AM, ̂  \ (2.18)

It easily follows from (2.18) that

(Aw, Au) = (A2w, u) — ( 3 - Au + a Aw, u ) + ( Aw, •=- + av ) .
\5n / \ on I

Using the symmetry of the form (Au, Av) we then get for ail w, v satisfying
A2u = A2v = 0 that

= - / Y Av + a Ai;, U \ + / Av, ̂  + aw \ . (2.19)

In the course of our analysis we shall also need to make use of an additional
Green's identity, which we now dérive.

LEMMA 2.2 : If ueH2(Q) is the solution of Problem (Q\ then

E(u, u) = < a, u > + < M(u\ X > + ai < A, Ku} - a2 x < Ku, u > -

: Since A2w = 0 w e have from (2.13) that

(«, w) = - / ^ AM + x^(w in - Kus\ u

Au - x(us

= - ( ^ Aw + a Aw + x[wnss + awss], w

a Aw + T awss + j - (Kus) [ u

vol. 17, ri» 4, 1983



346 J. H. BRAMBLE, R. S. FALK

OU
+ ( Au — x(wss + Ku„\ — + au

en

- < a Au - a.i(uss + Kun), u >

= < a, u > + < M(u), X >

ax

= < a , M > + < M(w), X >

- T < [2 a + K] ws, ws > + ax < > - a 2 x < Kw, u > .

We shall also require the foUowing a priori estimâtes satisfied by solutions
of the biharmonic équation (cf. [13]).

LEMMA 2.3 : Let v be a solution of the biharmonic équation A2v == 0 in Q.
Then there exists a constant C (independent of v) such that v satisfïes the fol-
lowing a priori estimâtes for all real s :

and

H3 + S -=-AÜ + a Av
dn

s/2+

- 1/2+s

J

•=- + OLV
3/2 + sj

(2.20)

(2-21)

Using these results we now establish a series of a priori estimâtes for solutions
of the biharmonic équation A2u = 0.

LEMMA 2.4 : If u is a solution of A2u = 0, then there exists a constant C
independent of u such that for all s ^ 0

du
dn -1/2-s

+ I

Proof : To estimate

_, -f | M(u) U3/2_J

, we use the Green's formula (2.16) and
n -1/2-s

defîne v to be the solution of the biharmonic problem

A2v = 0 in Q

v = 0 on F

M(v) = \|/ on T .

R.A.I.R.O. Analyse numérique/Numerical Analysis
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From (2.16) we have that

347

From (2.15),

Z 2 - .

d
- — Au

dn

s êA i ;

-f
3/2 + s

+4s

-1/2+s
+ T

) - 1 / 2 + s l «

-1 /2 +

- K

ll/2

s

-1/2+5

Since Au is a harmonie function, we have the estimate

dn -1/2+s

By standard trace theorems,

and
dn 3/2+s

-1/2+s

I 3 + S

Combining terms and applying (2.20) we get

du

Finally,

dn -1/2-s
= SUP Z-sl

vol. 17, n° 4, 1983



348 J. H. BRAMBLE, R. S. FALK

To estimate | V(ü) | -5 / 2 - s
 w e again use the Green's formula (2.16) and

define v to be the solution of the biharmonic problem

A2v = 0 in Q

M(v) = 0 on T

v = i|/ on F .

From (2.16) we have that

dn 3/2+s

Estimating terms as before and again applying (2.20) we get

< V(u\ * > < C[| M(u) |_3/2_s + | u |1/2_J 1| v

Finally,

3 + 5

(U) I -5 /2- . = SUP
15/2+s

1-3/2-s

LEMMA 2.5 \ Ij u is a solution of A2u = 0, then there exists a constant C
independent ofu such that for all s ^ 0

« l l / 2 - s + 1-3/2-, dn -5/2-s dn - 1 / 2 - .

: To estimate | u |1 /2- s we use the Green's formula (2.19) and define v
to be the solution of the biharmonic problem

A2v = 0 in Q

-=- Av + a Ay = v|/ on r

—̂ -f av = 0 on F .
on

R.À.I.R.O. Analyse numérique/Numerical Analysis
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From (2.19) we have that

< w, \|/ > = ( Av, -^- + au ) + ( 3 - Au + a AM, f

349

\ ' 3 B

-5- 4- aw
3 -1/2-5

•=- AM -f a Au
3/ï -5/2-s

15/2+s *

Applying standard trace theorems and the a priori estimate (2.21) we get

> ^ C
dn -1/2-5

-f
-1/2-s

ô A
•=- AM + a Aw
dn

-5/2-s

- 5 / 2 - ;

13 + s

I -1 /2+S •

Finally

" l l / 2 - S = S U P

c\
du
dn -1/2-5 5/7 -5 /2 -J

To estimate | AM | _ 3/2 _ s we again use the Green's formula (2.19) and define v
to be the solution of the biharmonic problem

A2y = 0 in Q

-=-Ai; + a Au = 0 on Fdn

-—h ar = \|/ on F .
dn

From (2.19) we have that

< AM, v|/ > = ( Av, ̂ h
\

\Av

^

1/2+s

^-Aw + a AM, V

du
dn +

-1/2-s
15/2+s •r- Aw H- a AM

3 -5/2-s

vol. 17, n°4, 1983
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Estimating terms as before and again applying (2.21) we get

< Au, «A > < qr faL d ndu

dn

du
dn '

f- au

\- au

+-1/2-s

-1/2-s

-^-A« + a Au
dn

-~-Au -\-aAu
dn

-5/2-s

-5/2-s

v\\ 3+s

I3/2+S •

Finally

| A M | _ 3 / 2 _ S = sup

-du

< A», x|/ >

,1*

+

3/2+S

-1/2-s

_d_
dn' -5/2-sJ

Using these results we can now prove the following.

THEOREM 2 . 1 : There exist positive constants Cx and C2 independent of a
and X such that for all s ̂  0

ClLl ^ 1-1/2-, + I <* 1-5/2-J ^ | V&» <?) ll/2-s + | MÇk, a ) 1-3/2-s

where u(k, a ) ( = TG[a -f xXJ + GX.) w r/ze solution of Problem (Q) and
a) = Mw()i, a).

Proof : To simpiify notation we will simply dénote u(X, o) by u for the
remainder of this proof.

To dérive the lower inequality, we use (2.10) and Lemma 2.4 to obtain

du
A, _ 1 i-y _ ç —-1/2 On OLU

-1/2-s

Now from (2.11), (2.14), and (2.15)

d A

- a[Aw - x(us - 2axuss - T ^ K W S - axKun

- aAf (M) - 2 axuss - x —

R.AXR.O. Analyse numérique/Numerical Analysis



SIMPLY SUPPORTED PLATE PROBLEM 351

Hence

| a ï_5/2_5 ^ C{\ V(u) |_5 / 2_ s + | M{u) |_3 / 2_ s + | u |1 /2_5 + | un |_ 1 / 2 _J .

Applying Lemma 2.4 we get

M - 5 / 2 - , < C [ | K | 1 / 2 _ I + |M( M ) |_3 / 2 _J.

To dérive the upper inequality we use (2.10) and Lemma 2 .5 to obtain

2_5 + I AM | -3,2- s < C\ ^Au + aAu +
ô

dn - 5 / 2 - s
1-1/2-s •

But by (2.10) and (2.11)

- ^ Aw + a Au = - o - x[unss + <xuj = - a - %XSS.

Hence

I u |1 / 2„ s + | Au |_3 / 2_, ^ C[| a U5/2_s + | X | . 1 / 2 , J . (2.22)

To complete the proof of the Lemma we observe from (2.10) and (2.14) that

M{u) = Au- x(uss + Kun) = AM - x(uss + KX - aXw).

Hence

| M(u) |_3 / 2_ s ^ C[ | Au |_3 / 2_ s + | u |1 / 2_ s + I ̂  | _ 1 / 2 - J .

The upper inequality now follows directly from (2.22).

3. APPROXIMATING SPACES ON il AND T

For 0 < h < 1, let { Sh} be a family of finite dimensional subspaces of
Hl(Q). Let r ^ 2 be an integer. We shall assume I h a t l o r "$ e // r(Q) with
1 < / < r there is a constant C such that

inf | | 4 > - x l l , - < Chl~j llc))^, 7 ^ 1 . (3.1)

We now define the operators Gh : 7/" 1 /2(r) »> Sh and Th : i /~ ^Q) -> Sh by

and

vol. 17, n° 4, 1983



352 J. H. BRAMBLE, R. S. FALK

These are just the Standard Ritz-Galerkin approximations to G and X.
It follows from the approximations assumptions and Standard duality

arguments that we have the following well known results (cf [2]5 [4]).

LEMMA 3 . 1 : There exists a constant C independent of a.fandh such that

| (G - Gh) a \j_1/2 + || (G - Gh) a \\j < Ch1^ || Go ||,

and

\(T - Th)f\j-1/2 + 1 (T - TJfjj ^ Chl-ï || r/H,

for2 - r^j^l ^ l^r.ae Hl-3/2(T) and f e Hl-2(Q).

Note that the restriction to O of continuous piecewise polynomials of
degree r — 1 on a quasi-uniform triangulation of R2 or a rectangular mesh
of " width " h are examples of spaces Sh satisfying Lemma 3.1.

In the analysis in the subséquent sections we shall require additional esti-
mâtes for the approximation of the operators T and G by Th and Gh. These are
contained in the following two theorems.

THEOREM 3 . 1 : Suppose 0 ̂  s ̂  r - 1 and that f e Hm(Q) with

— 1 ̂  m ^ max (r — 4, s — 1)

and p e Hl(T) with - 1/2 < / < max (r - 7/2, 5 - 1/2). 7hen for r > 2

I nr2 - 71] /1 1 / 2 _ , + 1 [T2 - n u l - , ^ ar+*+-**-1*-* \\f\\m

and

| [TG - Th Gh] p |1/2_s + 1 [TG - Th Gh] p fl,., <
^ ^f+3+min(s-l/2,r-7/2) | o j

where C is a constant independent of h and f

Proof : To simplify the exposition, let us use the notation

By the triangle inequality we have

_S < ! T[T -

+ ! [Th -T\[T- Th] f |||1/2_s + II [T - TJ Tf |||1/2_s

and

Hl [TG - Th Gh] p |||1/2_s ^ m T[G - Gh] P ||1/2_f +
+ Hl [Th -T\[G- Gh] p |||1/2_s + II T[G - Gh] p |||1/2_5.
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Using (2.1), (2.2), and Lemma 3.1 we get for 0 ^ s ^ r - 1, - 1 < m ̂  r - 2 ,
and - 1/2 < / < r - 3/2 that

+ 2 + min (s + 1 ,r - 2) il 7 Y II
II 1J llm + 2

/^tLm + 4 + min(s— !,*• —4)
m ?

TIG - GJ P |||1/2_, < C I [ G - G J P !_ !_ ,

^ CA' + 3 / 2 + m i n ( s + 1 - ' - 2 ) | |G |3 | | , + 3 / 2

1 [T„ - T] [T - TJ ƒ ||1/2_s ^ Ch*+1 || T[T - TJ ƒ ||2

< Chs+1 || [T - T J / | | 0 ^ Œ s + m + 3 \\f L

< c / ï
m + 4 + m i n( s~1> r~4) il ƒ ||

and

1 [T„ - T] [G - GJ P |||1/2_s ^ Ch*+1 || T[G - GJ P ||2

^ CAS+1 || [G - Gh] p ||o < Chs+l + 512 | p |,

^ Ch'+3+min{s~1/2-r~'!l2) I P I .

Now for 0 < 5 ̂  1, 1 < ï + 4 < r, and 1 < 7 + 7/2 < r, we also have that

II [T - TJ T/|||1/2_s < Œ " 1 + t + 4 || T 2 / l l ( + 4 < Ch°+'+* 11/11,
and

III [T - T J Gp | | |1 / 2„ s ^ Chs~1+J+^2 II TGp ||7+7/2 ^ Chs+T+^2 | p t .

We now apply these results in two cases. When 0 < s ^ r - 3, we get choosing

t — m and t = l that for — l < m ^ r — 4 = max (5 — 1, r — 4)

and for - 1/2 < / ^ r - 7/2 = max (5 - 1/2, r - 7/2)

III \T T 1 m . III <T i^Ls + l + 5/2 1 o 1 <- ^U+3+min{s-l/2,r-l/2) i o j
III l1 - 1 h\ ̂ P | | | l / 2 - S ^ C « | P |j ^ C/Z I P II •

When j > r — 3 we choose t = m + r ~ s — 3 and t = l + r — s — 3 and
get for — 1 < m ̂  5 — 1 = max (s — 1, r — 4) that

ll|[T-TJT/|||1/2_i^Cfc-+'||/IL+r-i-3
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and for - 1/2 ^ / ^ s - 1/2 = max (s - 1/2, r - 7/2) that

Hl [T - Th] |||

The theorem follows by combining these results.
There are two special cases in which we shall use this theorem.

COROLLARY 3 . 1 : Suppose 0 < s ^ r — 3, ƒ e Hm(Q) with — 1 ^ m < r — A
and p G / / ' ( H with - 1/2 < / ^ r - 7/2.

I j-T-2 T-2-1 A t II r T 2 y-2-i f ij < ^Lm + s+
I i i — 1 h \ J \ X I 2 - s ~T~ W*-1 ~~ l h ï J \ \ l - s ^ ^ n

and

\[TG- TfcGJp|1/2_J+ || [TG- r.GJPlI^.^CA'
Proof : Observe that s - 1 ^ r - 4 and 5 - 1/2 ^ r - 7/2.

COROLLARY 3.2 : Suppose^ ^s ^r ~ 2, ƒ e Hm(Q) with - 1 ^ m ^ r - 3
p e / / z ( r ) wiYA - 1/2 < / ^ r - 5/2. Then

2 - Tl] f |1 / 2_, + || [T 2 - Tfc
2] ƒ |U_, < Ch™+S + 2 || ƒ

and

| [TG - T„ Gh] p |1 / 2_ s + || [TG - T, GJ p \\^s ^ Chl

: Returning to the proof of Theorem 3.1 we note that for 0 ^ s < r - 2,
min (s - 1, r - 4) ^ j - 2 and min (.y - 1/2, r - 7/2) ^ s - 3/2. Hence for
0 ^ 5 < r - 2, - 1 ^ m ^ r - 2, and - 1/2 ^ / < r - 3/2 we get :

III T[T - T J ƒ |||1/2_s + m [Th -T][T- Th] f |||1/2_, ^ œ + s + 2 || ƒ ||M

and

Hl T[G - Gh] p |||1/2_, + ! [Th - T] [G - Gh] (3 |||1/2_s < Ch'

We also note that for 0 ^ s ^ r — 1

III \T — T ^Ti III < C h s + t + 3 I! f II
III i1 J ftJ i 7 llli/2-s ^ <-« II 7 lit

holds for 1 < ï 4- 4 < r and that

holds for 1 ^ 7 + 7/2 ^ r.
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Choosing m = t + 1 and / = t + 1 we get for — 2 ^ m ^ r — 3 and
- 3/2 < / ^ r - 5/2 that

L i i fiJ i 7 III 1/2 —s ^ C r t II J H m - 1
i.s+2+m
n

and

11 [T - Thi

The result follows by the triangle inequality.

THEOREM 3.2 : Suppose 0 ^ s ^ r — 2 and that ƒ e Hm(Q) wi
-\^m^r-3and$e Hl(T) with - 1/2 ^ / ^ r - 5/2.
Thenfor r ^ 2

+
1/2-s

CAm + s + 2

1 - 5
ƒ IL

+1/2-s

1 - s

Proof : By the triangle inequality we have

1/2-s

1/2-s 1/2-s

and

1/2-5

1/2-s 1/2-s

1/2-s
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Using(2.1), (2.2), and Lemma 3.1 wegetforO < s < r - 2, - 1 ̂  m < r - 3,
and - 1/2 < / < r - 5/2 that

\\ Tf \m+2 \\ f L,

/ 1

[Gh-

[Gh-

and

[ G -

•)[C

G]

G]

G»J|

GJ(

E»
c*

f 1

typ

V-

V G -

| [ G -

)<*

1/2-s

- G „ ] p

1/2-s

1/2-s

^ CA s + ; + 3 / 2

1/2-s

1/2-s

^ Chm

Chs+l+^2

-3/2

( ]

V1

•f s + 2 1

(

IGp

(i)
17y

(±:
ii G P

1 + 3/2

lm + 2 ^

T/l.+ !

m + 3

/2 ^

< C/ÏS

3"»] ƒ

; Chm*

*kChs

+ 1 + 3/2

1
-s + 2 II

1

+ Î + 3/2

• C A m + s + 2 ||

Z+5/2

/ IL .

/ II m »

The theorem foilows by œ m b i n i n g these results.

F o r 0 < k < 1, let { Sk} be a family of finite dimensional subspaces of

HnÇT), n ^ 0. Let r ^ 1 be an integer. We shall suppose that for c|> e Hl(T)

with j ^ n and 7 < / < r, there is a constant C such that

i n f I 4> — JC h ^ Ckl~J \ <\> \i. (3.2)

We further assume that for 7 ^ i ^ n there is a constant C such that

for all 4> e 5k.
The condition (3.2) and (3.3) together imply that for any given j0 ^ n

there is an operator nk : HJ0(T) -> 5ft with

I <J> - wfc 4» |j ^ Cfe fc1--» I H (3-4)
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uniformly in j and / for j ^ n and j ö < j < / ^ f. This result can be found
in [6]. Finally we dénote by Po the L2(T) orthogonal projection onto Sk, i.e.

< po 4), 0 > = < (f), 0 > for all 0 e Sk.

We now note for future référence the following property satisfied by the
projection operator Pö. Using (3.3) for7 ^ 0 and a standard duality argument
for j < 0 we obtain :

LEMMA 3.2: For — r ^j < n andmax(~ nj) ^ / ^ r there is a constant C
such that

Writing Po cj) = (j) — (I — Po) 4> and using Lemma 3.2 we get :

LEMMA 3 . 3 : Under the hypotheses oj Lemma 3.2, we have for 'all (|) e Hl(T)
that

4. THE FÏNITE ELEMENT APPROXIMATION SCHEME FOR PROBLEM (P)

We now turn out attention to the study of a finite element method for the
approximation of the simply supported plate problem, based on the mixed
formulation given in Problem (P). We shall consider the following scheme
under the assumptions that Sk cz Hn(T), n ^ 3/2 and that Sh and Sk satisfy
(3.1) and (3.2)-(3.3) respectively for some r ^ 3 and f ^ 3.

Problem (Pft
fc) : Find (üh, wh, Xk, ok) eSh x Sh x Sk x Sk such that

<*.(#„, vh) = (ƒ vh) + < ak9 vh > - x < (Xk)s, (vh)s > for all vh e Sh (4.1)

AJuh, zh) = (wh, zh) -f < Xk, zh > for all zh e Sh (4 n)

T<K[^-a2 f c l j i k >-x<(C h ) s > ûi k ) ,> + <wfcsjiJk>=0 forall nfc€Sk(4.3)

and

<Sfc,pk> = 0 forall p k e 5 k . (4.4)

Using the operators Th and Gh we can also rewrite Problem (Pft
fe) in a form

analogous to Problem (P). From (4.1) we have that

w„ = Thf + Gh[ck + x(kk)ss] (4-5)
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and from (4.2) that

üh = Th wh + GhXk = Tl f + Th Gh[_ak + x(Xk)ss] + Gh Xk. (4.6)

We now define for X, o e H3i2(T) x i/"1 / 2(r)

wh(Ka)=Gh[o + xXJ (4.7)

and

uh(K o) = Th Gh[a + xXJ + GhX. (4.8)

Then wh = Thf -f wfc(Xt, ok)

and wft = Tl j 4- wft(Xfc, afc)

so that Problem (Pjj;) can be restated in the form :

Problem (P*) : Find (Xk, ak) e Sk x Sk such that

- uuh(Xk, ak)] + T(wfc)M(Xk, ak) -f wft(Xk, afc)}

- /»0 { xXar, 2 ƒ - x(7t ƒ)„ - Th f } (4.9)

and
Po uh(Xk, ak) = - Po Tl ƒ•. (4.10)

Our aim now is to study the fonction uh(Xk, ok) and prove a resuit analogous
to that of Theorem 2.1. We first note that from the définitions of Th and Gh

it easily follows that { uh(Xk, ak), wh(Xk, afc)} is the solution of :

Problem {Ql) : Given (ok, Xk) e Sk x Sk find (uh, wh) e Sh x Sh satisfying

^«(wfc, üfc) = < cik, üh > - x < (A.JS, (vh)s > for all üfc e Sh

and

To simplify the proof of the main resuit of this section and also the dérivation
of the error estimâtes in Section 5, it will be convenient to have the following
result

LEMMA 4 . 1 : Let w(X, a), u(X, a), wh(X, a), and uh(X, a) be defined by (2.5),
(2.6), (4.7), and (4.8) respectively. Then ij (X, o)eHl + 2{T) x Hl(T) we have
for _ i/2 < / ^ r - 3/2 and - 2 ^ s < r - 3

| w(X, a ) — wh(X, a ) |_ 3 / 2 - s + || w(X, a ) — wh(X, oj j | - ! _ s

^ CAi + 5/2+sf| a | + | M 1 (4-11)
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and for all - 1/2 ^ / ^ r - Ijl and 0 < s ^ r - 3 that

\ a) - uh{X, CT) |1 / 2_ s + (| w(X, a) - uh(X, a) H^ ,

s [ | a | ï + | X U 2 ] . (4.12)

: Using the notation ||| <|> |||s = | $ \s + || 4> ||s+1/2 and applying (2.5),
(4.7), Lemma 3.1 and (2. \b) we have

Hl w(X, o) - wh(X, a) |||_3/2_. = Hl [G - G„] (o + tXJ |||_3/2_s

< C h l + 5 ' 2 + ° I G [ a + T X . „ ] ||(+3/2 ^ C h l + 5 ' 2 + s [ j a \ l + \ X | ( + 2 ] .

From (2.6) and (4.1) we get

u(X, a) - « A a) = [TG - Th Gh] (a + T X J + [G - GJ X..

Using (2.1), Lemma 3.1, and Corollary 3.1 it follows that

\\\u(X,G)-uh(k,a)\\\il2_s

^ Chl+'+s'2l\ o\l + \X | l + 2] + Chl+°+5'2 || GX

In order to state the analogue of Theorem 2.1 that we wish to prove we first
define for each (X, o) e Sk x Sk a finite dimensional version of the operator
M(k, a) = Mu(X, a) defined by (2.14). We first note that by (2.9), (2.10), and
(2.11) the fonction — Au(X, a) satisfies

)] = 0 in Q

, a)] + a [ - Au(K a)] = a + xXss on

Hence - Aw(X, a) = G[a -f TA.M] = w(3c, a). Thus it follows from ( 2 . 1 ^
and (2.14) that M(X, a) can be written in the form

M(X, o) = Mu(X, o) = Au(X, o) - T[USS(X, a) + Kun{X, a)]

a) - T|>S6(A,, o) + XX - aXw(X, a)] (4.13)

a) - x[wss(X, a)] - xX[X - OM& o)] .

We then define an operator Mh(X, a) by

M A a) = - wh(h a) - x [ « A a)]„ - xX[X - O M ^ a)] . (4.14)
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With this notation we now prove :

THEOREM 4.1 : For h ^ e/c, with e sufficiently smalt, there exist positive
constants C1 and C2 independent of o, X, h, and k such thatfor all

0 ^ s < min (r - 3, r - 3/2)

Q[l * Ui/2-, + i ° 1-5/2-,] < I ̂ o « A a) | 1 / 2 . s

+ | Po Mh{\ o) |_3/2_s ^ C2[| X | . 1 / 2 . , + | a U5 /2_J

for all (K a) e Sk x Sk.

To simplify the proof of this theorem, we first prove the following preli-
minary result

LEMMA 4 . 2 : There exist positive constants Cx and C2 independent of X, a,
and k such that for all 0 ^ s ^ f - 3/2

a// (X, a ) e S k x Sk w/iere u(k, a) w //ze solution of Problem (Q)
a) = Mw(X, a).

: To simplify notation we will again simply dénote u(X, o) by u for the
remainder of this proof.

Using Theorem 2.1 and the triangle inequality we have

1-

(4.15)

3 / 2 - ,

Applying Lemma 3.2 and a standard trace theorem we get for 0<s^r+1/2
that

\ ( I — P ~) IJ I 2 < CU2 + 2s I tJ \2 < C k 2 + 2s II »y II2

| y1 rü) u l l / 2 - s *s L / c I " l3/2 ^ C K II u II2

and for 0 < s ^ f - 3/2 that

1-3/2-s ^ ^ K
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To estimate | M(u) |_1/2 we define v to be the solution of the biharmonic
problem A2v = 0 in Q, v = 0 and ôv/ôn = \|/ on F. Since A2u = 0 in Q it
follows from (2.12), (2.13), and (2.14) that

Since || v ||2 ^ C | \|/ |1/2 by a Standard a priori estimate, we get

|_1/2 = sup
I Y t l /2

Hence

V* — -* 0 / -M-KM) — 3 / 2 — s ^ ^ ^ I /L( i! *̂  II0 ""• II ^ H 1 I •

U«i = 2 J
Now from (2.17) and Lemma 2.2 we have for a suffîciently large (so that
2 a + K ^ 0) that

^ < a, « > + < M(u), X > + «T < X, Ku > - a2 T < KM, M > .

Since (CT, A.) e Sfc x Sk we may write

M = 2

Applying standard trace theorems and (3.3) we get that

Recalling that u = u(X, o) = TG[a + xXss] + GX and applying the a priori
estimâtes (2.1) and (3.3) we get that

|| « I U ^ II T G [ o + T X J II l + \\GX\\,
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Applying the arithmetic-geometric mean inequality and combining results
we get for arbitrary ô > 0 that

max { | (I-P0)u |?/2_„ | (/ - Po) MQt) |2_3/2_s}

+ f 0 Po « l? /2-s + I Po M{ft) |2_3/2_J . (4.16)

Hence for k and 8 chosen sufficiently smal! we get using (4.15) that

QLI&-I-1/2-.+ M-3/2-J < \P0U(X,G)\1I2_S+\P0M(X,O) - 3 / 2 - 1 .

and choosing 8 sufficiently large in (4.16) we have from(4.15) that

| Po " ( ^ o) U/a-, + I A> M(X, o) |_3 / 2_ s < C2[ | X |_ 1 / 2_, + | er |_5 / 2_ s] .

To prove Theorem 4.1, we must now show that u(X, a) and M(X, o) can be
replaced by uh(X, a) and Mh(X, a) respectively.

Proof of Theorem 4.1 : Using Lemma 4.2 and the triangle inequality we
have that for 0 ^ s ^ 'r - 3/2

+ I o |_ 5 / 2 _ s ] - | P<M^, o) - uh(X, o)] |1/2_

| P o uh(X, o) | 1 / 2 _, + | P o M„(?,, a ) |_ 3 / 2_ s

C2[ | X |_ 1 / 2 _, + I a | _ 5 / 2 _ J + | P0[K(X, a) - «fc(A, a)]

| a) - Mh(X, o) |_ 3 / 2 _ s .

Hence to prove Theorem 4.1, we need only show that for 0 ^ s ^ min (r — 3,
r - 3/2)

| P0[u(X, a) - uh(X, a)] 11 / 2_ s + | P0[M(X, a) - Mh(X, a)] |_ 3 / 2_,

where Ô is a constant which is small with s = /Î//C. Applying the triangle ine-
quality, Lemma 3.2, (4.13), and (4.14) we have for 0 ^ s < 'r - 3/2 that

| P0[u(X, o) - uh{X, o)} |1 / 2_ s + | P0[M(X, o) - Mh(X, o)] |_3 / 2_ s

^ | u(X, o) - «fc(X, CT) |1 / 2_ s + | M(X, a) - M,(X, o) |_3 / 2_ s

+ C/cs { | w(X, o) - iifc(X, a ) |1/2 + | M(X, o) - M,(X, o) |_3 /2 }

^ C { | u(X, o) - uh(X, a) |1 / 2_5 + | w(X, o) - wh(X, a) |_ 3 / 2_,

CT) - uh(X, o) |1 /2 + fes | w(X, a) - wfc(X, a ) |_3 / 2 }.
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Now applying Lemma 4.1 with / = — 1/2 and (3.3) we get

| P0[u(X, a) - uh(X, a)] |1 / 2_, + | P0[M(X, a) - Mh(X, o)} |_ 3 / 2_ s

S + (ff] [l c '-W- + ' X ' - ^ - J •
The result now follows provided h ^ e/c and 8 is sufficiently small.

5. ERROR ESTIMATES FOR THE APPROXIMATION OF PROBLEM P

We begin this section by proving a preliminary lemma.

LEMMA 5 . 1 : Suppose the hypotheses oj Lemma 4.1 are satisfied Thenjor all
(|i, (3) e Sk x Sk we have

+ /Ï2 + S[| a - p |_1/2 + | X-]i |3/2] + | a - p | . 5

1/2 ^ / < r - 3/2 am/ - 2 < 5 ^ r -

P) | 1 / 2 _ s + 1 «(X, O)-M fcöl, P) H

+ ^ 2 + s [ | a - p |_ 1 / 2 +j X - ^ |3/2] + | a - p | _ 5 / 2 _ s + | X-\i

1/2 < / ^ r - l/2andO ^ s ^ r - 3.

: To simplify the exposition, let us use the notation

Then by the triangle inequality

! W(X, o) - w„(m p) | | | -3 / 2 - 5 ^ 1HK o) - n(?i, o) |||_3/2_s

+ ! wh(X-ii, o-M-wiX-ii, a-p) |||-3/2-5+|« M<X-ji, a-p) |||
and

I «(X, <T)-M,(m p) |||1/2_s < | «(X, G)-Uh(X, O) |||1/2_s

+ ||| u.iX-ii, a - p ) - t ^ - n , a -p) |||1/2-s+|| u(X-ii, a -p ) | | | I /2_,
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Applying Lemma 4.1 we obtain for — 1 /2 ^ / ^ r — 3/2 and — l^s^r — 3 that

Hl W(X, G)-W„(X, O) | _ 3 / 2 - s ^ Ch' + 5'2+s[_\ CT |,+ [M, + J

and

||w,(À-n,cj-p)-v l;(>,-n,CT-(3)|| |_3 /2_s^C/î2+s[|a-(3|_1/2 + |X-Hl3/2]

and for - 1/2 < / ^ r - 7/2 and 0 < s ^ r - 3 that

II u(k, a)-uk(X, a ) ||1/2_s ^ Chl+S>2+'1\ o \ l + \X | , + 2 ]

and

II uh(X-v, a-$)-u(X-v, a-p) |||1/2_5

Using (2.1), (2.2), (2.5) and (2.6) we obtain

and

-ii, a - p ) |||1/2_, <

^ C{

The lemma follows by combining all these results.

THEOREM 5 . 1 : Suppose f e Hm(Q),

(X, G) e Hl+2(T) x H\Q) n Hi+2{T) x H'(T) ,

fr ak)eSk x Sk are the respective solutions of Problems (P) and (/>*).
Thenjor h ^ sk with e sufficiently small, there exists a constant C independent
o/h, k, o, X, andjsuch that ifSk c H"(r\ n ^ 3/2

-' ki+s+3/2 || ƒ L+/* ' + 1 - ' ki+s+312|| ƒ L+/* ' + 1 - ' ki+s+312 [| a

/ora// - l / 2 < / ^ r-7/2, - l / 2 ^ / < f - 2 , - 2 < J < min(>—3,r-3/2),
— 1 ^ m ^ r—4, wAere i = max(—n, —3/2—5).
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Proof : Let nk X and nk a e Sk be approximations to X and a respectively
which satisfy (3.4). Using the linearity ofuh(X, o) and Mh(X, o) and Theorem 4.1
we get for 0 ^ s ^ min (r - 3, r - 3/2)

1-5/2-s

, afc) - MfcK X, 7ifc a)] | _ 3/2 _ , } .

Using (2.7), (2.8), (4.9), (4.10), (4.13), and (4.14) we obtain

^o uh(Xh ok)-P0 uh(nk X, nk a) - -PQT2
hj-P0 uh(nk X, nk a)

= Po(T
2~Tl)j+Po\u{X, a)-uh(nk X, nk a)]

and

Po Mh(Xk, ok)-P0 Mh(nk X, nk o) =

= -P0{ ïKaT2f-x(T2J)ss-Th f}-P0 Mh(nk X, nk a)

= P0 { xKa[T2-T2]j~T([T2-T2]f)ss-[T-Th]J}

Combining thesp results and using Lemma 3.3 and the triangle inequality
we obtain for Sk a Hn(T\ 0 ^ s ^ min (r — 3, f — 3/2) and

i = m a x ( - n, - 3/2 - s)

that

/\u(X,o)-uh(n^

- T j ƒ |,

From (4.13) and (4.14) we observe that

M(X, a)-Mh(nk X, nk ó) = wh(nk X, nk a)-w(Xi o)

+ x[uh(nk X, nk o) — u(X, a ) ] s s + xK[nk X - X] + OLTK\_U(X, a) — uh(nk X, nk a ) ] .
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Inserting this result in the previous inequality we obtain :

To estimate the above we first observe that by (3.4) for — 1/2 < / ̂  r — 2

Using (2.1), Lemma 3.1, and Corollary 3.1, we have for all ƒ e Hm(Q)
with - 1 ̂  m < r-A and all 0 ̂  s < r - 3 that

and

| U J /tlJ
3/2 I \f2_T2i f\ < intm+3/2-i iLi+s+3/2

Now from Lemma 5.1 with (\i, P) = (nk X, nk a) and (3.4) we have for all
- 1/2 ^ / ̂  r - 7/2, - 1/2 ^ / ̂  r - 2 , and 0 < s ̂  r-3 that

)-w^7rk^7rka)|1/2_s + ^ + s + 3 / 2 | w ( ^ a ) - w ^ X , ^

| w(\, a) - wh(7tk X, nk a) | _ 3/2 _ s + k1"+s + 3/2 | w(X> a) - wft(7tk X, nk a) |.

(since /* ̂  ek, s < 1).
The theorem now follows easily for 0 ^ s ̂  min(r —3, r— 3/2) by combining

these results and using (3.4) and the triangle inequality, and then for
- 2 ̂  s ̂  0 using (3.3).

Using Lemma 5.1, Corollary 3.1, and Theorem 5.1, we now prove our
main result.
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THEOREM 5 . 2 : Suppose the hypotheses of Theorem 5.1 are satisfied. Then if
(«, w, X, CT) and (uh, wh, Xk, ok) are the respective solutions of Problems (P) and
(Pfc

k), we have jor i = m a x ( - n, - 3/2 - s) and all - 1/2 ^ / ^ r - 7/2,
- 1/2 ^ / ^ r - 2 and - 1 ^ m ^ r - 4 that

w/zen - 2 < s < min(r-3, r—3/2)

I Ö-S* |1/2.s + || S-Sfc iU-s < C { H ƒ L

+ Ai + i-i ^+.+3/2(1 o |( + | x \l + 2] + ki+v2+s[\ a | i + | X \i+2] }

whenO ^ s ^ min (r - 3, r - 3/2).

Proö/ : From the définitions of ü7 w, üh and ŵ  we have

w ~ wh = [T - r J ƒ + w(k, a) - w ^ afc)
and

S - ff* = [ r 2 - Tl] f + z^ 5 a) - uh(Xk, ok).

Again denoting | <\> \s -f || cj> | |s+1 /2 by ||| cj) |||s we have by the triangle inequality
that

III w - w h |||_3/2_, ^ ! [ r - Th]f UI-3/2-,+ 111 ^ , o ) - w h ( ^ ak) |||_3/2_s

and

III ü-üh |||1/2_, ^ | | | [ r 2 - r a / 111̂ 2-,+ IH «(X, a ) - ! ! ^ afe) |||1/2_a.

It then follows directly from (2.1), Lemmas 3.1, 5.1, and Corollary 3.1 that
for all - 1 «S m < r - 2, - 1/2 < / < r - 3/2, and - 2 < s ^ r - 3

[| a |, + | X \l+2] + h2+s[\ a-ak U1 / 2 + | >.-Xk |3/2]

+ | a-CTfe | _ 5 / 2 _ s + | A,-A.fc |_ 1 / 2 _ s }

and for all - 1 ^ m < r - 4 , - 1 / 2 < / < r - 7 / 2 and 0 ^ j ^ r - 3 that

III ff-2, llli,2-, ^ C { Am + 3 + s || ƒ L + *I + 3 /2+1l a |I + | ^ |l + 2]

+ /ï2+s[| G-ok \-lt2 + \\-Xk |3/2] + | a - a k | _ 5 / 2 - , + | ^ - ^ | - 1 / 2 - , } -

The theorem now follows directly from Theorem 5.1.
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We now consider some applications of the error estimâtes in Theorem 5.2.
Suppose r < r + 3/2, feHr~\Q) and (a, X) e Hr(T) x / r ~ 2 ( r ) . Then if
Sk cz H3/2(T) and r ̂  3 we have

|| w-wfc IU ^ C { A^1!!! ƒ ||P_4 + | a | r_7/2 + | X |P_3/2] + ̂ 2 [ | a | r_2 + | X |;]

and if Sk a H5/2(T) and r ̂  4 we have

II ff-2* lio < C { hr[\\ f ||p_4 + | a | r_7 /2 + | X U 3 / 2 ] + ̂ + 3 / 2 [ l er | r_2 + | X |; } .

In particular if we take Sh to be continuous piecewise cubics, Hermite
cubics, or cubic splines and Sk to be cubic splines defined on F as a function
of arclength then we are in the case r = 4, r = 4 and Sk <= i/5 /2(F). Hence if
je L2(Q) and (a, X) G ƒƒ2(F) n H\T) we obtain

II 2 - 2 , Ho ̂  C { h\\\ ƒ Ho + | a |1/2 + | X |5/2] + k^2[\ a |2 + | X |4] } .

To balance these terms we could choose h = /c11/8 so that for k sufficiently
small the condition h ̂  skis automatically satisfied.

In the next three sections of this paper we shall consider the case where Q
has strictly positive curvature K and analyze a fïnite element method based
on the variational formulation Problem (P*) given in Section 1,

6. SOME FURTHER PRELIMINARIES

Using the définitions of T and G given in Section 2, we see from (1.12) that

w = Tf+Go (6.1)

andfrom(1.13)that

Let us now define
w(a) = Go (6.3)

and

u(o) = TGo - G\-^GO\. (6.4)

Then
w = Tf + w(a)
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and

so that Problem (P*) can be restated in the form :

Problem (P)* : Find CJ e H~ m(T) such that

u(a) = -T2J+G\±-1 (6.5)

We now establish some results about the function u(u) which will be needed
in the analysis of the finite element approximation of Problem (P*). From the
définitions of T and G we first observe that u(a) is the solution of the biharmo-
nic problem :

Problem (8*) : Given a e H~1/2(F) find u e H2(Q) satisfying :

A2u = 0 in Q

— •=- Au — a Aw = a on T
dn

and
- Au + xK[un + au] = 0 on r .

We then have the following a priori estimate.

(6.6)

(6.7)

(6.8)

THEOREM 6 . 1 : There exist positive constants Cx and C2 independent of a
such that for all s ^ 0

Cl I V 1-3/2-, <

a) w /Ae solution of Problem (Q *).

: Using (6.4), (2.1), and (2.2) we have

|_3/2_s

li/2-s \TGo\1/2-s +
1/2-s

c\\\ Go \\_,_s

C [ | C T | _ 5 / 2 _ S -

-1/2-sJ

1-3/2-J ^ C|a|_3 /2_ s .

To prove the first inequality we use the fact (cf [7]) that

vol. 17, n°4, 1983



370 J. H. BRAMBLE, R. S. FALK

But from (6.6)-(6.8) it follows that Ga = - Au = - xK[un + au] and so
we get

Applying Lemma 2.4 we get that

where M(u) = Au — T(WSS + Kwn). Now since u satisfies (6.8),

M(u) = xKau — xuss.

Hence| un U 1 / 2_ s < C | u |1 / 2_ s and so

| a | _ 3 / 2 _ s ^ C | M | 1 / 2 _ $ .

To establish our next resuit, we will need the following lemma.

LEMMA 6.1 :Ifwisa harmonie fonction in Q, then

Let z e //2(Q) n //Q1 (Q) satisfy Az = w. Then

(w, w) = (w, Az) - ( w , £ ) - (Vw, Vz) = ( w , ^

(since w is harmonie). Hence

& 5£\1 / 2

dn9 dn

Now since z = 0 on T, we have the identity (cf. [5], équation (5.4))

dz dz

ÔJC,

/ dz dz
Hence ( K ^ - , ^ - Az || 0 = || w || o which easily gives

1

LEMMA 6 . 2 : There exist positive constants Cx ö«rf C2 independent of o such
that

Q l a l 2 ^ < \(u{o\oy\ < Q l a l 2 ^ .
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Proof : Using (2.1), (2.2), and (6.4) we get

371

u(<y)\x ^ | TGG\1 +

*A\\r ii^ C || Ga || _

G -W<

Hence | < w(c), a > | ^ | w(a) | : | a \_1 ^ C | a \2_v

To prove the first inequality, we observe that it follows easily from the
définitions of u(a) and w(q) that (a, w(a), w(a)) satisfy the variational équa-
tions

and

Hence

ia(w(a), v) = < a, Ï; > for all ve H1

ijf4p\ A = K a ) , z) - / ï ^ , z ) for all

xX '

Since w(a) is harmonie we may apply Lemma 6.1 to obtain

a, u(a) K '
C

since 0 < x < 1 and X > 0.
Now let v satisfy

- Au .= 0 in H

t; = \|/ on T .

Then a standard a priori estimate gives

(6.9)

r\Q). (6.10)

(6.11)

(6.12)

and since v is harmonie, we have the estimate

dv
il 3/2 *
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Then

J^ H.

= < o , » > =

\ Bn
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Aa(w(a), i>)

\

FALK

»)o[

Hence

M - i = sup ! * ! * > < C |n<a) | 0 .

+ efli(r) IV 11

Combining results we get

lal2.! ^ C|<a,tt(a)>|.

7. THE FINITE ELEMENT APPROXIMATION SCHEME FOR THE CASE K > 0

Based on the variational formulation of the simply supported plate problem
given in Problem (P*) we now consider the following finite element approxi-
mation scheme. The approximating subspaces are those described in Section 3,
except now we oniy assume that Sk <= Hn(T\ n ^ 1/2, r ^ 2, and r ^ 2.

Problem (P**) : Find(SA, wh, afc) e Sh x Sh x Sk such that

^a(wto üfc) = (/, ü j + < afc, vh > for all üh e Sh (7.1)

^«(fffc. *fc) = (wfe
 z/i) - \ ^ ' z î / f o r a11 zh eSh (7.2)

and
<öh,Pk> - 0 for all pkG5k . (7.3)

Using the operators Th and G ̂  we can also rewrite Problem (P* *) in a form
analogous to Problem (P*). From (7.1) we have that

^ - 7 " , / + G , a k (7.4)

and from (7.2) that

Üh = T ^ - G J ^ H J = Tft
2/-TfcGfcok-GJ^TA/j-G)T^Gfc

(7.5)

We now define for a e H~ 1 / 2(r)

wfc(o) = Gfca (7.6)
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and

Then wh = TJ + wh(ok)
and

so that Problem (P* *) can be restated in the form :

Problem QPA
fc*) : Find ok e Sk such that

uh(ak) = - Po 11 ƒ + Po Gh\ J- Jh f I. (7.8)

Our aim now is to study the fonction uh(ok) and prove results analogous to
those of Theorem 6.1 and Lemma 6.2. We first note that from the définitions
of Jh and Gh it easily follows that uh(ak\ wh(ok) is the solution of :

Problem {Q% *) : Given ak e Sk find (uh, wh) e Sh x Sh satisfying

^a(wto vh) = < ak> vh > f° r all vh e Sh

and

^«(w ,̂ 2fc) = (wte Zfc) - < -pr, zfc > for all z ^ 5 , .

To simplify the proof of the main resuit of this section and also the dérivation
of the error estimâtes in Section 8, it will be convenient to have the following
result

LEMMA 7.1 : Let u(a) and uh(o) be defined by (6.4) and (7.7) respectively.

Then if a e / / ' ( D w have for ~ \/2 ^ l ^ r - 5/2 and 0 ^ $ ^ r - 2 that

| W(a) - Mfc(a) | 1 / 2 _ s + i| u(o) - uh(o) \\x_8 ^ Chl+S + 312 \ a | , . (7.9)

Proof : F rom (6.4) and (7.7) we have

u(a) - uh(a) = [TG - Th G}] a - \G(^- G) - G / - ^ (
|_ \xK J \xK
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Hence the result follows directly from Corollary 3.2, Theorem 3.2, and the
triangle inequality.

We are now ready to state the main result of this section.

THEOREM 7 . 1 : For h ^ s/c, with e sujjiciently small, there exist positive
constants Cx and C2 independent of a, h, and k such that for all

0 ^ s ^ min (r - 2, f + 1/2)

Pouh(p)
1 / 2 _ 5

To simplify the proof of this theorem we first prove the following lemma
which is a restatement of the theorem with uh(o) replaced by u(a).

LEMMA 7 . 2 : There exist positive constants Cx and C2 independent oj a and k
such thatjor allO ^ s ^ r + 1/2

1-3/2-s Q | _
3/2_s

for all a e Sk, where u(o) is the solution of Problem (Q *).

Proof : Using Theorem 6.1 and the triangle inequality we have

Ci I a | _ 3 / 2 „ s - | (/ - Po) u(a) |1 / 2_ s ^ | Po u(a) |1 / 2_,

Applying Lemma 3.2 and a Standard trace theorem we get for 0 ^ s ^ r + 1/2
that

| (/ - Po) u(a) |f/2_s < Ck2s+l | M(O) |? < Ck2s+l || M(a) ||23/2 .

Now using (6.10) and elliptic regularity theory we have

Applying Lemma 6 .1 and (6.12) we get

|| W(CT) \\l/2 ^ C \ w(a) \l^ C | < w(a), a > |

and so

| ( / - Po) u ( a ) \\l2_s ^ Ck2s+1 | < M(a), a > | .

Since a e 5fc) we get using (3 .3) that

M(CT), a > | = | < Po M(a)s a > | ^ | P o t/(a) | 1 / 2 | a | _ 1 / 2

^ C / C " 2 - 1 | P o W(CT) | 1 / 2 _ s I CT | _ 3 / 2 - s -
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Hence | (/ - Po) u(a) |J/2_S ^ | Po U(G) |1/2_s | a |_3/2_s.
Combining this result with (7.10) and using the arithmetic-geometric

mean inequality establishes the lemma.

Proof of 1heorem 7.1 : Using Lemma 7.2 and the triangle inequality we
have for 0 ^ s < r + 1/2 that

Ci I o |_3/2_s - | P0[u(a) - uh(o)] |1/2_s ^ | Po uh(a) |1/2_s

^ C2 I O 1-3/2-s

Hence to prove Theorem 7.1 we need only show that for

0 ^ s < min(r - 2, r + 1/2)

| P0[U(G) - uh(p)] \lI2-s ^ 8 | o |_3/2_,

where 5 is a constant which is small with E — h/k,
Applying the triangle inequality, Lemmas 3.2 and 7.1 and 3.3 we get

| P0[u(o) - uh(a)]\m_s < | u(a) - uh(o) |1/2_s

+ \{I-P0)[u(o)-uh(o))\V2_s

< | u(a) - uh{<3) | 1 / 2 _ s + Cks | w(a) - uh(a) | 1 / 2

1 + hk*\ | a | . 1 / 2 ^

The result now follows for h ^ ek with e sufficientïy small.
In the discussion of the solution of the linear system of équations arising

from Problem (P% *), we shall need to make use of the following result, which
is a discrete version of Lemma 6. 2.

LEMMA 7.3 :Forh ^ zk^withe sufficientïy smalt, there existpositiveconstants
Cx and C2 independent of o, h, and k such that

Cx I a |2_x ^ | < Po uh(a\ o > | ^ C2 | a \lx for all GeSk.

Proof : Applying Lemma 6.2 and the triangle inequality, we have for all
GsSk that

Cx | a lij - |< U(G) - uh(G\ a > | ^ |< Po uh(ó)9 a > |

^ C2 |a |2_1 + |<w(a) - uh(G\G} | .
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Now using Lemma 7.1 and (3.3) we get

| < u(o) - uh(a\ u > | < | u(a) - uh(a) |1/2 | a |_1/2

< ch a I2 < — a l2

The resuit follows for h ^ ek and e sufficiently small.

8. ERROR ESTIMATES FOR THE APPROXIMATION OF PROBLEM (P*)

We begin this section by proving a preliminary lemma.

LEMMA 8.1 : Suppose the hypotheses of Lemma 7.1 are satisfied. 7hen for
all p e Sk we have

I U(O) - M„(P) | 1 / 2 _, + || W(C7) - ujfi) f,.,

< C { h'+s+3'2 | a |( + h°+1 | a - p |_1/2 + | a - p |_3 / 2_ s }

/or - 1/2 < / ^ r - 5/2 W O s$ s < r - 2.

Proof : Applying the triangle inequality we have

! u(a) - Mh(P) | | |i/2-s < Hl "(er) - uh(o) | | | i / 2- s

+ ! u„(u - P) - M(a - p) |||1/2_5 + I u(o - p) |||1/2_s.

From Lemma 7.1 we get

Hl u(a) - u„(p) |||1/2_s ^ Chl+s+3>2 | a |,
and

I uh(p - p) - u(o - P ) | | | 1 / 2 _ s ^ Chs+1 | o - p |_1/2 .

Using(2.1),(2.2),and(6.4),

II* - » i . n . . « I rG(. - » ! , „ . . + |« la fj0(„-B ] | iB_ i

^ C[|a-p|_5/2_s+|a-pU3/2_s ^ C|a-P|.3/2.J.

The lemma follows by combining these results.
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THEOREM 8 . 1 : Suppose f e Hm(Q) and a e Hl(T) n Hl(F) and ak e Sk are
the respective solutions of Problems (P*) and (-P**). Then for h < efc with e
sufficiently smalU there exists a constant C independent ofh, fc, a, andfsuch that if
Sk <= Hn(T), n > 1/2, then

f7 — k 1 — 3 / 2 —s il f i

> r Ö// - ï/2 ^ / < r - 5/2, - 1/2 < / < f, - 1 < 5 *£ min ( r -2 , f +1/2),
and — 1 ^ m ^ r — 3, wAere / = max (— «, 1/2 — s).

: Let nk a e Sk be an approximation to a satisfying (3.4). By the
linearity of w(a) and Theorem 7.1 we get for 0 ^ s ^ min (r — 2, f + 1/2)

I <** -nk a U3 /2- s

Using (6.5) and (7.8) we have

Pouh(ak)~Pouh(nka)

P0[uh(ok) - Mh(7tfc a ) ]

- «Po Tl f+P0 GL^ Thf]-P0 uh(nk a)

= Po(T2-T2
h)f-Po | G ^ ^ " G / ^ oWa)~^(% a)] .

Now using Lemma 3.3, Corollary 3.2, Theorem 3.2, and the triangle
inequality, we obtain for Sk <= Hn(T\ 0 ^ s ^ min(r — 2, r+ 1/2), and
f = max (— w, 1/2 — 5) that

+ ki+s

-« f c(% a)

u(a)-uh(nk a)

u(G)-uh(nk a)

u(a)-«h(7:k a)
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Applying Lemma 8.1 with p = nk a and (3.4) we have for — 1 ƒ2 ^ / ^ r—5/2
and - 1/2 ^ / ^ f that

j u(a) - uh(nk a ) | 1 / 2_ s -f kl+s~li2 | u(p) - uh{nk o) |(

^ C { Z ^ 2 " ' /c l + s " 1 / 2 | a |, + /*3/2"' fci+s"1/2 | a - 7ct a |_1/2

+ I ̂  " % a L3/2~, + fcl+s"1/2 I ff - «fc ff 1-2 }

^ C { hl+2~l / c l + - 1 / 2 I a I, + fc3/2+.+/1 a | .}

(since h ^ e/c, 8 < 1).
The theorem follows for 0 ^ s < min (r—2,r + l/2) by combining these

results and (3.4) and for — 1 ^ s < 0 using (3.3).

THEOREM 8 . 2 : Suppose the hypotheses oj Theorem 8.1 are satisjied. Then ij
(w, w, CJ) and(üh> wh, ak) are the respective solutions of Problem (P*) and(P£*\
we have for i = m a x ( - n, 1/2 - s)9 and all - 1/2 < / < r - 5/2,

- 1/2 ^ / ^ r, and - 1 ^ m ^ r - 3

l« - «Jl/2-s + II « - «fc Ill-s

/or 0 ^ s ^ min (r - 2, f + 1/2)

- vvj|_s

-f

for - 1 ^ 5 ^ min (r - 2, f + 1/2).

: Using the définitions of ü and üh and the triangle inequality we get for
0 ^ s ^ min (r - 2, r + 1/2) that

+ |||«(a)-M/,(a /t)|||1/2_s.
1/2-s
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From Lemma 8.1 with |3 = uk we have

^ C {/*'+s+3'2 | a \l + h*+1 | u-ak |_1/2 + | a - a k |_3/2_4 } .

The estimate for ||| ü — üh |||1/2 _s now follows immediately from Corollary 3.2,
Theorem 3.2, and Theorem 8.1.
Using the définitions of w and wh we get

-a f c)| | |_1 /2 . J+|| | G(a-ak) |

Applying Lemma 3.1 and estimâtes (2. \b) and (2. 2b) we get for

- 1 ^ s ^ min (r - 2, f + 1/2)

III w-wh | | | _ 1 / 2 „ s ^ C { hm+s + 2 il ƒ L

The result follows immediately from Theorem 8.1.
We now consider some applications of the error estimâtes m Theorem 8.2.

Suppose r ^ f + 5/2, ƒ e Hr~3(Ql and a e Hr(T\ Then if Sk c Hlj2{Y)
we have for r > 2 that

|| G - « J U ^ C {ff-l[\\ ƒ | | , _ 3 + | a U 5 / 2 ] + k f + 3 ' 2 \ a \ f }

and for r > 3 that

II S - £„ ||0 ^ C { Alll ƒ ||r_3 -f | a U5 /2] + fc;+5^2 | a |. } .

In particular if we use continuous piecewise cubics for Sh and continuous
piecewise linear functions for SkJ then r = 4, r = 2 and we obtain the estimate

S - { A4[|| ƒ || x + | a |3/2] -f fe
9/2 | a |2 } .

To balance these terms we could choose h — k918 so that for k suffïciently small
the condition h ^ ek is automatically satisfied.
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9. EFFICIENT SOLUTION OF PROBLEMS (P*) and (P£*)

In this section we show how some ideas developed in [7] can be used to
develop methods for the efficient solution of the linear Systems of équations
arising from Problems (P*) and (P£ *). To describe these ideas we first define
a discrete boundary Laplacian

/* : Sk -> Sk

by < / t * , e >

where

Now lk is positive definite and symmetrie and hence ls
k may be defined in the

usual way by taking powers of its eigenvalues.
The methods presented in this action depend heavily on the following

property of the operator ls
k.

LEMMA 9 . 1 : (cf. [7]). Let SK c H^dQ). Thenjor \ s | ^ 1, there are constants
Q and C2 such that for <\> e Sk

Q ! 4> L2 ̂  I %2 * \l < c 2 1 <j) |s
2.

We now show that this result is also valid for a larger range of values of s.

LEMMA 9.2 : Let Sk <= //^ÖQ). Thenjor — r < s ^ 1, there are constants
Cx and C2 such that for 4> e Sk

Q I * |s
2 ̂  I / f <t> 12 < c 2 1 <|» |s

2. (9 .1)

Proof : The proof is by induction. By Lemma 9.1 the result is true for
— 1 < s ^ 1. We now show that assuming (9.1) holds for a value s ^ 1,
it also holds for the value s — 2 (provided s — 2 ^ — r). Since

c 1 | r 1 n < i H _ 2 < c 1 | r 1 K (fo"< i),
we have by the triangle inequality that

Q IC1 n - Ci I r x - 4"1] H ^ I <K-2
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By standard estimâtes analogous to those of Lemma (3.1) we have for
2 - r ^ s ^ 1 that

Using the induction hypothesis we have that

so that after combining results we obtain

and

The lower inequality now follows directly from (3.3).
To get the upper inequality we note that it was proved in [7], Lemma 7.1

that

l<i>lo^ c / r 1 ! / ^ « H o -

lt therefore follows easily by induction and then interpolation that for s ^ 1

The upper inequality follows directly from this result.
We now consider the implications of this inequality for the solution of

P r o b l è m e *).
Combining Lemmas 7.3 and 9.2 we see that

Q I 4"1/2 a \l ^ |< Po uh{o\ o > | ^ C2 | /k"
1/2 a \2

0 .

Setting a = II12 0 we further obtain

c, i e tg < |< p 0 uh{ii'2 e), il'2 e > | ^ c21 e \2
0.

Using the définition (7.7) of uh(o) we have

Ci I 6 |g < (^ II'2 Po\ Th Gh - Gh(j^\ Gh~\ II'2 0, 9 ̂ < C2 I 0 |S .

This inequality means that the system with matrix induced by
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has bounded condition number and hence we can obtain a solution 8 to the
équation

l{12 ï

to within accuracy hr by the conjugate gradient method (on some other itéra-
tive method) in 0(m l/h) itérations. To apply such a method we need for each

itération to compute Po g for g e //1/2(F) and \Th Gh - Gh(^ J Gh a and

lk er for a e Sk (cf. [1]). All of these opérations can be done by solving sparse
Systems of linear équations and will involve only back substitution at each
itération since the matrices do not change and hence require only an initial
factorization.

We now turn our attention to the study of Problem (P*). From Theorem 4.1
and Lemma 9.2 it easily follows that for 0 < s < min (r — 3, r — 3/2).

C Tl /-1/4-S/2 1 |2 , i 1-5/4-s/2 ^ |2T
c i L I lk A lo "+" I lk ° loj

< I II'*-** Po uh{\ a) \l + | lï^-«2 Po Mh(X, a) \%

Letting

we get

Po uh«r+sl2 A.* /k
5/4+s/2 a*) |2

X*, 4 5 / 4 + s / 2 a*) g < C2[| X* IJ + | a* |g] .
(9.2)

Using the définitions of Mh(X, u) and uhÇi, a) and the fact that Po Gh,
Po Th Gh, and /̂  are self adjoint operators on Sk, it is possible to find operators
D l l 5 D12, D2i (= £>f2), and D22 so that (9.2) can be rewritten in the form :

Q D X* |S + | a* |g] < < Z>n X* X* > + < D12 o*, X* >

+ < D21 X*. o* > + < £>22 o», a* > < C2[| X* |S + | a* |S] .

This inequality means that the matrix induced by the operator

has bounded
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condition number. Hence if instead of solving the system(4.9), (4.10) we solve
the well conditioned system :

D
21

D12-i r**i [*
D22\ U * J [_F2

1 iwhere 1 is chosen so that (4.9)-(4.10) and (9.3) are equivalent, then the

conjugate gradient method can be used to obtain the solution in 0(ln \/h)
itérations.

One finds after calculation of the operators Dtj that if the conjugate gradient
method is applied to this system in the untransformed variables (X, o) and
s = 1/2, we need only compute the action of the operators Th7 Gh, Po, d2/ds2,
and integer powers of lk. From the définitions of these quantities it follows that
all these computations are quite easy.
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