@article{M2AN_1978__12_2_173_0, author = {Wahlbin, L. B.}, title = {Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration}, journal = {RAIRO. Analyse num\'erique}, pages = {173--202}, publisher = {Centrale des revues, Dunod-Gauthier-Villars}, address = {Montreuil}, volume = {12}, number = {2}, year = {1978}, mrnumber = {502070}, zbl = {0382.65057}, language = {en}, url = {http://www.numdam.org/item/M2AN_1978__12_2_173_0/} }
TY - JOUR AU - Wahlbin, L. B. TI - Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration JO - RAIRO. Analyse numérique PY - 1978 SP - 173 EP - 202 VL - 12 IS - 2 PB - Centrale des revues, Dunod-Gauthier-Villars PP - Montreuil UR - http://www.numdam.org/item/M2AN_1978__12_2_173_0/ LA - en ID - M2AN_1978__12_2_173_0 ER -
%0 Journal Article %A Wahlbin, L. B. %T Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration %J RAIRO. Analyse numérique %D 1978 %P 173-202 %V 12 %N 2 %I Centrale des revues, Dunod-Gauthier-Villars %C Montreuil %U http://www.numdam.org/item/M2AN_1978__12_2_173_0/ %G en %F M2AN_1978__12_2_173_0
Wahlbin, L. B. Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration. RAIRO. Analyse numérique, Tome 12 (1978) no. 2, pp. 173-202. http://www.numdam.org/item/M2AN_1978__12_2_173_0/
1. Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. L, Comm. Pure Appl. Math., vol. 12, 1959, pp. 623-727. | MR | Zbl
, and ,2. A Theorem on Homeomorphims and the Green's Function for General Elliptic Boundary Problems (in Russian), Ukrain. Math. Z., vol. 19, 1967, pp. 3-32 (English translation, Ukrain. Math. J., vol. 19, 1967, pp. 509-530). | MR | Zbl
and ,3. Partial Differential Equations, Interscience, New York, 1964. | MR | Zbl
, and ,4. Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation, Numer. Math., vol. 16, 1971, pp. 362-369. | MR | Zbl
and ,5. Numerical Analysis of the Finite Element Method, Séminaire de Mathématiques supérieures, Presse de l'Université de Montréal, 1976. | MR | Zbl
,6. General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., vol. 46, 1972, pp. 177-199. | MR | Zbl
and ,7. Interpolation Theory Over Curved Elements, with Applications to Finite Element Methods, Comput. Methods Appl. Mech.Engrg., vol. 1, 1972, pp. 217-249. | MR | Zbl
and ,8. The Combined Effect of Curved Boundaries and Numerical Integration in Isoparametric Finite Element Methods, The Mathematical Foundations of the Finite Element Method, A. K. Aziz, Ed., Academic Press, New York, 1973, pp. 409-474. | MR | Zbl
and ,9. Effects of Quadrature Errors in Finite Element Approximation of Steady State, Eigenvalue and Parabolic Problems, The Mathematical Foundation of the Finite Element Method, A.K. Aziz, Ed., Academic Press, New York, 1973, pp. 525-556. | MR | Zbl
,10. An investigation of the Green's function (in Russian), Uspehi Mat. Nauk., vol. 20, 1965, pp. 267-268.
,11. Les Méthodes directes en Théorie des Équations elliptiques, Masson, Paris, 1967. | MR
,12. L∞-convergence for Finite Element Approximation, 2. Conference on Finite Eléments, Rennes, France, May 12-14, 1975.
,13. Interior Estimates for Ritz-Galerkin Methods, Math. Comput., vol. 28, 1974, pp. 937-958. | MR | Zbl
and ,14. An Observation Concerning Ritz-Galerkin Methods with Indefinite Bilinear Forms, Math. Comput., vol. 28, 1974, pp. 959-962. | MR | Zbl
,15. Interior Maximum Norm Estimates for Finite Element Methods, Math. Comput., vol 31, 1977, pp. 414-442. | MR | Zbl
and ,16. Maximum Norm Estimates in the Finite Element Method on Plane Polygonal domains, Parti, Math. Comput. (to appear). | Zbl
and ,17. Optimal L∞ Estimates for the Finite Element Method on Irregular Meshes, Math. Comput., vol. 30, 1976, pp. 681-697. | MR | Zbl
,18. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N. J., 1970. | MR | Zbl
,