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R.A.I.R.O. Analyse numérique/Numerical Analysis
(vol. 12, n° 2, 1978, p. 173 à 262).

MAXIMUM NORM ERROR ESTIMATES
IN THE FINITE ELEMENT METHOD

WITH ISOPARAMETRIC QUADRATIC ELEMENTS
AND NUMERICAL INTEGRATION (*) O

par L. B. WAHLBIN (2)

Communiqué par V. THOMÉE

Abstract. — We consider a second order real elliptic Dirichlet problem in a bounded plane
smooth domain, Lu = f in fi œ R2

y u — 0 on dQ. For its numerical solution we employ
the finite element method with quadratic triangular isoparametric éléments combined with
a numerical intégration procedure involving function values at three nodal points in each element.

We prove that iffhas third order derivatives in Ly and if the séquence of finite element parti-
tions is quasi-uniform with the maximum diameter of any element for a certain partition being
essentially h, then with uh denoting the approximate solution we have

max\u(x)-uh(x)\ ^ C . A 3 - | | / | | ^ Î .

Hère s is an arbitrarily smallpositive number, and CB does not depend on h or f

1. THE NUMERICAL PROCEDURE AND THE MAIN RESULT

In this section we shall present the problem which we want to solve, define

precisely our method for finding an approximate solution, and state our error

estimâtes (in Theorem 1.1). After giving some références to related work

we proceed to prove Theorem 1.1 using certain auxiliary results which will be

verified in the remaining sections of the paper.

The following conventions will be used throughout this paper. The letter C

will dénote a generic constant, and e will be used for an arbitrarily small

positive number, often subject to a non-essential change. Generic constants C

may depend on £ without explicit mention.

(*) Manuscrit reçu le 21 avril 1977.
l1) Supported in part by the National Science Foundation, U.S.A.
(2) Department of Mathematics, White Hall, Cornell University, Ithaca, U.S.A.
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174 L. B. WAHLBIN

Let £2 <=<= R2 be a bounded domain with boundary dQ of class
consider the Dirichlet problem

Lu s - I —
i,j=10Xl

)—)+Tibi(x)—+c(x)u = f infi,

u = 0 on ÔQ.

3, and

(1.1)

Here it is assumed that the real coefficients aiJt bt and c belong to ^ 3 (Q),
and that the symmetrie matrix function { atj (x) } is uniformly positive definite.
We remark that the smoothness of the coefficients will be used mainly in
estimâtes for the numerical quadrature; for various regularity results needed
for solutions of (1.1) or its adjoint, less smoothness suffices. We postulate
that the problem (1.1) has a unique weak solution in W\ (Q) for any ƒ in
L2 (Q). Here W^ (O) for k ^ 0 an integer and 1 ^ p ^ oo stands for the
closure of ^ (Q) in W£ (Q), the Sobolev space with norm

I J\D«v\\p
Lpmy/p for l ^ j x o o ,

V\\L (Q) f ° r P = °°-max

(Q) = is then theFor p = oo we shall also use non-integral k;
appropriate Hölder space.

We shall now describe the numerical solution of the problem (1.1) using
the finite element method with isoparametric quadratic éléments and a second
order accurate numerical intégration scheme.

We follow the work of Ciarlet [5], and Ciarlet-Raviart [6, 1, 8].
We consider a séquence of finite element partitions associated with Q.

Let N = iV0, N0+l, . . . , (or a subsequence thereof) and let

In a preliminary way, let points on dQ and in Q be given, inducing a certain
straight-edged triangulation of a domain close to Q (fig. 1). Each triangle

Figure l .

R.A.I.R.O. Analyse numérique/Numerical Analysis



FIMTE ELEMENTS AND NUMERICAL INTEGRATION 175

tn, n = 1, . . . , N, can be thought of as the image under an affine map of the

two-simplex t with vertices qx = (0, 0), q2 = (1, 0), and q3 = (0, 1). We shall

refer to t as the référence element. Assume that the séquence of triangulations

{{tnY\ }NO *S quasi-uniform, i. e., if p„ = diam (tn) and 5„ = max { diameter

of inscribed circles of tn }, then there exist constants c( > 0, i = 1, 2, 3 inde-

pendent of n and N such that for any N,

c1h^pn^c2on^czh for n = l, . . . ,JV. (i-2)

For large N, no triangle has more than two vertices on ÔQ. If tn does have
two vertices on the boundary, we modify it in the following way in order
to obtain a better approximation to 3Q. Let qu q2, and q3 be the vertices
of tnt with qu q2e dÇï. Dénote by q13 and #23 the midpoints of the segments
[#i, ^3] and [q2> ^ 3 ] , respectively, and by ql2 the midpoint of [qu q2~\.
Let qi2 be the (closest) point of intersection between ÔQ and the normal
to [qu q2] through q12, (cf. fig. 2).

Introducé qip 1 ^ i < j ^ 3 as the midpoint of the segments [_qi9 qj\

of the référence element t, and let

be the map with Fhl= 1,2, quadratic polynomial functions of the coordinates

xu x2 of t9 and such that

Set

vol. 12, n° 2, 1978



176 L. B. WAHLBIN

The notation above is extended in the obvious way to the unaltered triangles;
then tn = tn, and F(n) is affine. When no ambiguity is possible, we shall often
write t for tn and F for F{ny

Since the séquence of triangulations { {tn }* }^0 is quasi-uniform, the
maps F(n) are uniquely determined and invertible if h is small enough
(see [5, 7, 8]), and if ct, p„ and a„ have the same meaning as ct, p„ and an in (1.2)
but relative to tm then

We set
N

Qh = (J closure (t„),

and note that since dQ is of class ^ 3 , we may assume that

max dist (x, cQ) = 0 (h3) as h -+ 0. (1.3)
xedSïh

In gênerai, neither is Qh included in Q, nor Q included in Qfc.
o

We next define the séquence of spaces of approximating functions, { Sh }.
Let first Sh consist of all functions % on Qh such that

where P is a quadratic polynomial on the référence element t. We note,
[5, 6, 7, 8] that x is determined in each element tn by its values at the six
points qit qtJ. We set now

Whenever necessary, functions in S will be extended by zero to larger
domains.

In order to solve the problem (1.1) numerically, consider first its weak
o

formulation: Find ue W\ (Q) such that

D , , Ç { ï, du dv ( * , du \ 1 .
BQ(u9v)=2\ < X, au +( L bt—+cu\vydx

Jnli,j=i dxj dxt \i=i dxi J J

= (ƒ, v)a =\ fadx for all ve Wi(Cl). (1.4)

Roughly speaking, to obtain an approximate computable problem, we replace
o o

here O by Oft and Wl (Q) by S . In gênerai we must use numerical intégration
to evaluate the intégrais involved. We proceed now to describe the method
of approximate quadrature.

R.A.I.R.O. Analyse numérique/Numerical Analysis



FINITE ELEMENTS AND NUMERICAL INTEGRATION 177

Consider first an intégral g (x) dx over the référence element. For this,

let

be an approximation using the values of the function only at the three
midpoints of the sides. We then have

I(t,P) = P(x)dx (1.5)

for P a. quadratic polynomial.
Now, for / an arbitrary element,

^ (x)dx=\_g(F(x))JF(x)dx,

where

We put

lit, g) = l(t, g(F(.))/,(.)) = \ Z g(«y)/F(5«).

Let

<(«, ») - Z / ( t £ **£- ^ +( Z 6,f̂  +«V) (1-6)
«=1 \ i,j=l OXj OXi \ ï = l OXt J J

and

CA w)ffi = Z ntmfw). (i.7)

Note that even if Qft <t Q, in order to evaluate the terms in (1.6) and (1.7)
it suffices to have the coefficients of L and the functions f9 v and w defined
on Q n Qh. Thus> no extension of the coefficients or of the functions will be
necessary in the numerical work.

o

The séquence of approximations uh e Sh to the solution u of the
problem (1.1), or (1-4), is given by the requirement that

(uh> x) = <ƒ, X)S for all x e Sh. (1.8)

Our main resuit can nowbe stàted as follows.

vol. 12, n° 2, 1978



178 L. B. WAHLBIN

THEOREM 1.1: Assume that ÔQ is of class W3, that the coefficients of the
operator L belong to <^3 (D), and that { atj {x) } is uniformly positive definite.
Assume furthermore that the problem (1.4) has a unique solution for every ƒ
in L2 (Q). Let the séquence of partitions { { tn }* }^Q be quasi-uniform and
satisfy (1.3).

Then, given any 8 > 0 there exists a constant C = Ce such that if h is suffi-
ciently small, then for any f e W\ (Q), uh is uniquely determined by (1.8) and

II U~Uh\\Lao{ÇÏ) = Ch H ƒ ||ïF?(fl)' (1«9)

Hère uh is taken as zero outside ofQh.
We note that for ƒ e W\ (Q), it follows from Sobolev's inequalities and

regularity results for (1.1) {cf Section 2) that ue<g3~z{Q). Furthermore,
essentially no more smoothness in the maximum norm can be guaranteed
for u, so that the estimate (1.9) is in a certain sensé sharp.

Error estimâtes in the L2 and W\ norms for the problem (1.1) (with
bt = c = 0), and also other classes of isoparametric éléments and intégration
methods, were given in Ciarlet and Raviart [8], and, in the case of W^
estimâtes, in sharper form in Ciarlet [5]. For maximum norm estimâtes
in the case when the upcoming intégrais are assumed to be evaluated exactly,
cf Nitsche [12], Schatz and Wahlbin [15, 16] and Scott [17], and références
given there.

In the case of piecewise linear functions combined with the midpoint rule
for numerical intégration, an error estimate of the form

(0) (1.10)

can be inferred from the work of Nitsche [12] and Fix [9]. In [12] it is shown
that an estimate C h2 In l/h || u H ^ holds for the error in the approximation uh

"calculated" without use of numerical intégration. The resuit of [9] is that
|| wh — uh H^i ^ C h2 || ƒ 1(̂ 2, and (1.10) easily obtains. The techniques of
the present paper would give the somewhat sharper error estimate C h1 ~e 11 ƒ | \w*
for the piecewise linear case with the midpoint rule.

In our quadratic situation, the estimâtes in W\ of [5] would only give
an O (/z2~e) estimate in the maximum norm.

Theorem 1.1 can readily be extended to the case of cubic isoparametric
simplicial éléments, using then an intégration method which is exact for
quartics on the référence element {cf [5, 8]). The resuit is that under appro-
priate smoothness assumptions,

R.AJ.R.O. Analyse numérique/Numerical Analysis



FINITE ELEMENTS AND NUMERICAL INTEGRATION 179

We shall now give the proof of Theorem 1.1. For this purpose we need
to modify a number of results from [5, 6, 7, 8 and 15, 16] to fit the present
situation. In connection with maximum norm estimâtes, new difficultés
arise from the numerical intégration, and from the "boundary layer"
(Q\Qft) u (Qh\Q). In the proof immediately below, only the relevant final
modifications will be quoted — their proofs will occupy the remaining sections
of the paper.

Proof of Theorem 1.1: Note that if we can establish (1.9) for any uh satis-
fying (1.8), then unique solvability of (1.8) follows from the alternative
theorem of linear algebra, and the uniqueness in the continuous problem.

We shall first shift our point of view slightly and consider uh as an appro-
ximation to a function u (h) defined on a domain Q (h) contaming Qh.
Although u (h), as indicated, will depend on h, its dependence will be "uniform"
for all our purposes, and having Qh <= Q (h) will be convenient.

Let c4 be such that
max

cf. (1.3), and let
Q(h) = { x : dist ( X , Q ) ^ C 4 / Î 3 } . (1.11)

It will be shown in Lemma 2.1 that if the coefficients of L are extended to
the outside of Q (continuously in W* norms) then for h0 > 0 small enough,
for h ^ h0 the problem

Lv = g in £2 (Zi),
Ü = 0 on

has a unique solution v = v (h) for any ge L2(Q (h)). Let now ƒ be as in (1.1),
and extend it continuously in W* norms to the outside of Q. Let u (h) be the
solution of (1.12) with g = ƒ. Then Lemma 2.1 also shows that

(1.13)

We note that dQ (h) is of class ^ 3 with the third derivatives of functions
occuring in local chart représentations of the boundary being uniformly
bounded. The modulus of ellipticity for the extended operator L is uniformly
positive for h small, and the <^1 norms of the coefficients are uniformly
bounded. It follows that the constants occuring in a priori estimâtes involving
up to third order derivatives, and in Sobolev inequalities, are uniformly
bounded.

The domains Qh which were based on the original domain Q are unchanged,
and what were previously the boundary nodes are now not necessarily on
dQ(h). Figure 3 depicts the gênerai perturbed situation.

vol 12, n° 2,1978



180 L. B. WAHLBIN

Figure 3.

It remains, by (1.13), to estimate u(h) — uh. Let first uheSh be such that

Bnh fa, X) = (ƒ> X)^ = Bnh (u (ft), x) for X e S* ; (1.14)

here the forms do not involve numerical intégration. That uh is uniquely
determined will follow from Lemma 5.3 (applied with L* replaced by L).

In Lemma 6.1 we shall show that

\\u(h)-Zh\\La>(am^Ch3-*\\f\\wUny (1.15)

The proof of (1.15) consists to a large extent in modifying arguments
from [15]. The major novelty is to take into considération the "boundary
layer" Q (h)\Qh. In particular, Lemma 5.9 is crucial in this context.
Following [16], certain simplifications of the proof in [15] are used, see
in particular the proof of Lemma 5.7. These simplifications depend on the
fact that our problem is two-dimensional and that we are content with a
loss of e in the rate of convergence in (1.15). We make essential use of the
basic properties of Sh given in [5, 6, 7, 8].

For our present purposes, an important by-product of the proof of (1.15)
is the following result, Lemma 5.8: Let v be supported in an element £, which

o

we recall has diameter less than or equal c3 h. Let \|/A e Sh satisfy

£nh(X,vk) = (x,î0 for xeS". (1.16)

This problem has a unique solution for h sufficiently small, cf. Lemma 5.3,
and we have

Here
/ N \l/p

with the obvious modification for p = oo. Let us remark that it is the esti-
mation of the last term on the left of (1.17) that will be most troublesome.

R.A.LR.O. Analyse numérique/Numerical Analysis



HNITE ELEMENTS AND NUMERICAL INTEGRATION 181

By (1.15) we are now left with bounding uh-uh. Let x0 e t„0 be such that

\(uh~uh)(x0)\ = || u*-u* HL» <nh>-

By an inverse property, (3.11), we have

\\~uh-uh\\Lx(ah)<LCh-l\\~uh-uh\\LM (1.19)

To estimate the right hand side here we shall employ a duality argument,

11 | I ("* ~ Uh> V)> C1 * 2 0 )

o

For each fixed such v, let tyheSh satisfy (1.16). Note that we base the
duality argument on use of the form B not involving numerical intégration.

We now corne to a crucial point in our argument, (1.21) below. Using (1.14)
and (1.8) we obtain

Writing uh = (wA-wft)-i-wA in the right hand side we thus have

W n h - a « } s /! +J2 +J3. (1.21)

The reason for this last step is, loosely speaking, that we know much more
about the properties of uh than about uh. The term Ix will be handled via a
"kick-back" argument.

Using (1.5) and the Bramble-Hilbert lemma, and raapping back and forth
to the référence element, relying on the results of [5, 6, 7, 8] we establish

o

in Lemma 4.1 that for vh9 wheS\

, wh)\ S C^3|j^||(^(nh) i|^||(^(oh)? (1.22)

As we shall now show, these results enabîe us to estimate Iu I2 and I3 in (1.21).

vol. 12, n° 2, 1978



182 L. B. WAHLBIN

For Ix we obtain, employing (1.22), the inverse property (3.10), and (1.17),

èCh^\\uh-uh\\L^ahy (1.24)

To estimate I2, we first note that

} \ Z \ \ % i \ \ \ \ (1.25)

This follows from (1.15), see Lemma 6.2 for the additional details.
From (1.22), (1.17) and (1.25) we get

\ \ \ \ l (1.26)

Finally, (1.23) and (1.17) give

(n). (1.27)

Inserting the estimâtes (1.24), (1.26) and (1.27) into (1.21), and the result
of that opération into (1.20) and (1.19) we have (changing e for convenience
in notation),

l | * l k ( o f c ) | | | | - ( p l l )

Taking h sufficiently small, this proves that

(1.28)

The desired result (1.10) now follows from (1.13), (1.15), (1.28) and the
triangle inequality. This proves Theorem 1.1.

The remainder of this paper consists of pro\ing results used in the proof
of Theorem 1.1 above. In Section 2 we give the perturbation argument that
enables us to assume that Qh is contained in the domain of the problem we
are approximating. In Section 3 we collect basic results concerning the
spaces SH, relying on [5, 6, 7, 8], Error estimâtes for the numerical intégration
scheme are considered in Section 4, again following [5] and [8] with some
modifications. In Section 5 we dérive, cf. [13, 14, 15, 16], certain estimâtes
in L2 and Lt based norms for the projection with respect to the form B not
involving numerical intégration. Finally, the results of Section 5 are used in
Section 6 to dérive maximum norm estimâtes in the case without numerical

R.A.LR.O. Analyse numérique/Numerical Analysis



FTNITE ELEMENTS AND NUMERICAL INTEGRATION 183

intégration — the considérations hère follow those of [15] and [16], with
some additional arguments necessary in order to handle the difficulties intro-
duced in the boundary layer.

2. A PERTURBATION RESULT

In this section we shall prove the perturbation resuit used in the proof
of Theorem 1.1.

Let Q, be as in Section 1, and for 8 > 0,

fi5 = {x:there exists y e Q such tha t |x -y j ̂  8}.

(In the proof of Theorem 1.1, fi (A) = fiC4"3.) Note that for sufficiently
small 8x > 0, there exists a constant C = C (6U Q, p, q, /, k) such that
for 0 < 8 S 8l5

for 0 ̂  l < k, with

q>

2 + p(k-l)
2

if p < oo,

if p — oo.

(2.1)

That the constant will depend only on the indicated quantities may be seen
from any standard proof of the Sobolev inequalities, see e. g. [11], since
the boundary of fiô has, for small 8, essentially the same smoothness pro-
perties as dQ.

Assume that the coefficients of the operator L have beenextended to fiSl for
some Si > 0, and that this extension is continuous in W* norms, see [18]
(or [3, 11] for k ^ 3, which are the only cases we shall use). We may also
assume that the extended matrix { au (x) } is uniformly positive definite
on Qbl.

Consider now for 8 ^ 51 the family of problems

Lv = g in Q6,
v = 0 on d£lh. (2.2)

LEMMA 2.1: (i) there exists 0 < 80 ^ 8X such that for 8 ^ 80, the
problem (2.2) has a unique weak solution for every g in L2 {€lh)\

(ii) given 1 < p < oo and k = 2,3 there exists a constant C = C (80, fi,/>, k)
such that for 8 ^ ô0,

| | | | ! k l i ( 2 . 3 )
(iii) there exists a constant C = C (80, Q) such that the following holds:

If f e Wf (Çï) and g is an extension of f to Q5°, continuous in W* norms, then

vol. 12, n° 2,1978



184 L. B. WAHLBIN

with u the solution of (1.1) and w5 the solution of (2.2),

ƒ | | ^ ( n ) . (2.4)

Proof: We first show the statement concerning the existence of a unique
solution. Assume this were false. Then there would exist a séquence S1 —> 0,
81 S §i and functions üf on Q£ = Qôi with || vt ||L2(nf) = 1 such that

Lv( = 0 on lïf,
vt~0 on dQt.

By well known a priori estimâtes, cf. [1] and références there,

C|NL(n()^C- (2.5)
The constant C hère is independent of i since the proof of (2.5) can be
accomplished by locally flattening the boundary via a mapping that has its
third derivatives bounded uniformly in 5.

By Sobolev's inequality (2.1),

so that for i large,

Since the inclusions W% (Q) c <g (Q) and Wi (Q) c W^1 (Q) are compact,
<ƒ• [H] s we may assume that t?4 -> 5 in ^ (Q) n ^ (Q). For u? 6 W\ (11)
we have #Q (uis M?) = 0 and thus v satisfies

Ba(v, w) = 0 for all we W\ (11).
Since for x E 3Q,

we see that v e W\ (O).
But by (2.6), || v ||L2(n) ^ 1/2 and this contradicts the assumed uniqueness

for the problem (1.1).
Thus, for 8 small enough the problem (2.2) has a unique solution.
To see that (2.3) holds one may again consult [1], reasoning as for (2.5)

to see that the constant is uniform in 8.
For the estimate (2.4), note first that

L(uô-u) = 0 in Q, )

uh~-u = uh on ÔQ. ) y * }

R.A.I.R.O. Analyse numérique/Numerical Analysia
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By the mean-value theorem and (2.3), (2.1),

| i | | p | | | ( 2 . 8 )
where 2 < p < oo.

Let now k be a non-negative number so large that the operator L,

Lv == Lv + kv

satisfies the maximum principle on ü, cf. e. g. [3]. Let u be determined by

Lu = 0 in Q5

u = uh on dn.

By the maximum principle and (2.8) we obtain

l k ( ) | | | | ? ( ) (2.9)

Next, using (2.7) we have

L(u + u-ua) = -ku in Q,

W + M _ W
5 = O on an.

Thus from (2.1), (2.3) and (2.9),

From this and (2.9) it follows that

which is the desired estimate (2.4).
This complètes the proof of Lemma 2.1.

3. THE FINITE ELEMENT SPACES

In this section we collect results from Ciarlet [5], and Ciarlet-Raviart
[6, 7, 8] and simple conséquences thereof that will be needed in the sequeL
Most of the notation in this section was introduced in Section 1.

We shall use the seminorms

( ^ J K H I W for l£p<oo,

max || Dav||Loo(Q) for p = oo.

vol. 12, n° 2, 1978



186 L. B. WAHLBIN

Recall that the séquence of meshes is quasi-uniform in the sense of (1.2').
Then for h srnall enough, F : / —> t is one-to-one (we suppress the index n
in the notation). Letting v(x) = v (Fx) we have the following fundamental
relations for the behavior of seminorms under this mapping. Corresponding
results hold with v replaced by v and F by F ~1 :

^ClJ.l^llF-l^co^La^+i^^ka)!^^^}. (3-3)

I v \w% (o

Hère and below the generic constant C is independent of f, v9 and A, and
dépends on the constants in (1.2'), and on p. The notation / stands for the
Jacobian determinant.

When applying the estimâtes (3.1)-(3.4) the following results are needed:

M (3.5)

Cfc-1,/ = 1,2,3,4, (3.6)

rh2+l / — n i oc ^ , / - ü, 1, 2,

If F is affine, certain of these estimâtes can trivially be improved.
We next consider certain approximation properties of Sh that will be

important. Let II dénote the interpolation operator which takes a
continuous function u on t into the function II u of Sh (t ) which has the same
values at the points qi9 1 ̂  i S 3, #^, 1 ̂  i <j ^ 3. If II dénotes the
corresponding interpolation operator on i, we note that II is exact on quadratic

polynomials. Since (II v) = II i> we obtain the following results by mapping
back and forth from t to t and applying the Bramble-Hilbert lemma [4]

•s.

on t. The results (3. l)-(3.8) above are used to evaluate the influence of the
mappings on various norms and seminorms.

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Let 1 S p, q ̂  oo, O ̂  / S k ^ 3 (/ = O, 1, 2), and
(i) q > 2/k,
(n)ifp< œ:q^2p/(2+p(k~I)%

if p = oo:q >2l(k-l).
Then

II» TT «II < r fc2((1/j>)~(1/*))+fc"Jll«ll C\ Q\

We shall have later use for various estimâtes for functions % in Sh.
We easily dérive the following.

for 0^ï<k^2t l^p^œ. (3.10)

k ( , ) for l<q,pûoo. (3.11)

max |x(x)|. (3.12)

As a préparation for our next and final resuit in this section, note that for
quadratic polynomials, the third order derivatives vanish. Correspondingly
for % e Sh, we use (3.4), the fact that % is a quadratic polynomial, and (3.3)
(with F replaced by F'1) to see that

ilxHnco^ClIxll^co for l ^p^oo . (3.13)

This estimate enables us to prove the following resuit, which is well known
for various other finite element spaces.

Let %eSh and <Ö e ̂  (Q). Then

Hm, (3.14)

where @ = { |J tn: tn n supp © # 0 }. To see this, use (3.9), (3.13) and
(3.10) to obtain

The desired result (3.14) follows by squaring and summing over the éléments
in 3.

4. ERROR ESTIMATES ESf THE NUMERICAL INTEGRATION

The notation in this section will be as in Section 1.
Using ideas from Ciarlet [5] and Ciarlet-Raviart [8] we shall prove the

following result.
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LEMMA 4 .1 : For any e > O there exists a constant Csuch thatfor v, weSk

andfeW?(Cï),

\Bah(v, w)- (4.1)

and

. (4.2)

Here f is assumed to be extended to the outside of Q, continuously in W^
norms.

Proof: We shall first consider the highest order terms occuring in the form B.
Let t be a typical element and set

ff dv dw T T / dv dw\
= «y— —dx-/(/,aü— — .

J OXi OXj \ OXt OXjJ

Letting g (x) = g (F x) and (F " \ as in dénote the kih component of the
map F " 1 , we have

Observe that D{F~X) = (DF)'1 = (1//F) (coJ)f)5 where co DFis the matrix
of cofactors of DF. Thus

dxf JF dxi+u

where a = 1 for i = k = 1, a = — 1 for i = k = 2, and a = 0 otherwise.
By the Bramble-Hilbert lemma and (1.5) we have that

It follows that

ÖXk

where

dFl+a,
l+a,

dxi+G dxj+c> JF
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Thus,

\E2{t)\ûC t E \au(x)\w
fc,i=l a+P + Y + 5-3 «

Now, using (3.5) and (3.8) combined with (3.7),

^S? (o

Considering (3.1)-(3.4) with F replaced by F " 1 , and using (3.5) and (3.8),
we obtain from (4.3) that

1*2(01 £c E ^ | % k

Next let

Jt ldxt

Reasoning as above we see that

~ jk=i l dxk ex;

Finally, if

0(i) = cvwdx — I(t, cvw)

then

(4.5)

(4-6)

Summing the above estimâtes (4.4)-(4.6) over all éléments t in QA we obtain
the desired estimate (4.1).
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To prove (4.2), we have as bef ore with E(t) = \fwdx — I(t, f w).

Using (3.7) to estimate derivatives of JF, and using also Hölder's inequality
with lfp+l/p' = 1 (p = 2 — 6, Ô small positive) and Ifq+ljq' = 1 (q large
but < QQ), we have

Using (3.1)-(3.4) with F replaced by F~l, and (3.6), (3.8) we obtain

Sum this inequality over all éléments t in £lh. Using that

and Sobolev's inequality, cf. (2.1), we get

lef, »)«,»(ƒ, w)g>|

lU.^î + l l w l l ^ ^ + l l » ^
Employing the inverse property (3.11) we may replace p' by 2 and ^' by 1
at the expense of a factor /Te, if p' and r̂' were suitably chosen close to 2
and 1, respectively. The inequality (4.2) obtains.

This complètes the proof of Lemma 4.1.

5. SOME AUXILIARY ESTIMATES

Let L* be the adjoint operator of L, taken on the domain Q (h)9 cf (1.11).
Consider the problem of finding \)/ such that for v given,

*lr = » in O(fc), )
= 0 on da(h) ) K }
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Let tyheSh be such that

Bah(%^h) = (X>v)nh for %eS\ (5.2)
o

Then, with functions in Sh extended by zero,

> - W = 0 for XeS* (5.3)

so that v)//, is the projection of v|/ with respect to the bilinear form B without
numerical intégration. In this section we shall give various estimâtes for x|/ — \|/ft,
\|/A and \|/. In Lemmas 5.7-5.9, v shall furthermore be supported only in an
element t.

We shall first need to investigate approximation of functions which vanish
o

on dQ (h) by functions in S . Compared to Section 3, we need to take some
care of what happens in the "boundary layer" Q(h)\Q.h.

LEMMA 5.1: Let R > 0 be given. There exists a constant C depending on R
and the W^-norms of functions occurring in local chart représentations
of ÔQS such that for h sufficiently small the following holds.

Let D be a dise of radius R with center in Qh, and let Z>A = D n u (h),
D2 = 2 D n & (h) where 2 D dénotes the dise of radius 2 R concentric with D.

o o

For any w e W\ (Q (h)) n Wl (Q (h)) there exists %eSh such that

(5.4)

Proof: Let %eSh be such that

w at nodes interior to ÎÎ, )
0 at boundary nodes. )

Consider first an element t without nodes on the boundary of Q. By (3.9)
then,

For t an element with nodes on the boundary we obtain using (3 9) and
(3.10), (3.11),

l l l ^ lInw-xlkir). (5-7)
By (3.12) we have

\\nw-x\\Lmin£C max \w(x)\. (5 8)
dsin
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Assume now that w has been suitably extended from Cl (h) so as to be defined
on (3/2) D; this can be accomplished using only the values of w on D2. Since
dist (ÔQ, d£l(h)) S Ch3 we have for a < 1, using Sobolev's inequality on
(3/2) D (so that the constant in (2.1) dépends only on R),

max |ii?(x)| ^CIi^llw

Taking e. g. a = 2/3 we obtain from this and (5.7), (5.8) that for a
boundary element,

(5.9)

Finally, we consider D1\Qh. Here % = 0 and with l/p -f l/p' = 1, p < oo,

^ (5.10)

Choose here p' = 3/2.
By (5.6), (5.9) and (5.10) we obtain, since the number of boundary

éléments is proportional to h~1
9

This complètes the proof of the lemma.
We note the following conséquence:

COROLLARY 5.1: There exists a constant C such that the following holds.
For any w e W\ (O. (*)) n W\ (Q (h)), there exists %eSh such that

The next lemma, concerning approximation in the maximum norm, is
proven in a similar way.

LEMMA 5.2: Given E > 0 there exist C and p < oo such that for
o o

w e Wp (Q (A)) n W\ (Q (h)) there exists %eSh such that

Proof: Let % be as in (5.5), and for an element t, let

I(t) = \\u>-x\\Looit) + h\\w-x\\wk(tv

For t an element without boundary nodes, by (3.9),

(5.11)
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For t a boundary element we have

By (3 9),
I

Using (3 10) and (3.12),

I2(t) £ C\\nw-x\\Laott)è Cmzx\w(x)\ £ Ch3'\\w\\v.(QW)

for a < 1. Thus, for t a boundary element, for p large,

I{t)^Ch3-^\\w\\wl(awy (5.12)

By (5.11) and (5.12) it remains only to consider

As above, this is bounded by CA3ot || v \\W3(am for any a < 1.
This concludes the proof of the lemma.

o

Note that for any % e S \

H W~X l i nand thus, in the term /( || it? — x H^fn*,) *n L e m m a 5.2, QA cannot be replaced
by Q(h). (This fact accounts for the need of Lemma 5.9 in the proof of
Lemma 6.L)

We now return to the problems (5.1), (5.2). Note that by Lemma 2.1 and
Fredholm's alternative, the problem (5.1) has a unique solution. Since
Sh c W*(Q(h))y using Corollary 5.1 one obtains, following Schatz [14],
that (5.2) has a unique solution for h sufficiently small. Furthermore [14]
gives

LEMMA 5.3: There exists a constant C such that

We shail also need local estimâtes for y\t — tyh. Using Lemma 5.1, the inverse
estimate (3.10), and (3.14), one obtatns the next resuit, following Nitsche-
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Schatz [13] with some minor modifications (which we shall not give) when
the domain D2 below intersects the boundary of Q.

LEMMA 5.4: Let R > 0 be given. There exists a constant C depending on Ry

the W™ norms of fonctions occurring in local chart représentations of 3Q,
the modulus of ellipticity for the operator L*, and the W™ norms of the coeffi-
cients of L*s such that for h sufficiently small the following holds.

Let D be a dise of radius R with center in Qhi and 2 D the concentric dise
of radius 2 R. Let Dx = D n Q (h), D2 = 2D nQ (h). Then for \|/, \|/„ as
in (5.1M5.3),

As in [15], to détermine the dependence of C on R in more detail for R
small, we map D linearly to a dise of unit size. There we apply Lemma 5.3
(with h replaced by h/R — for h/R sufficiently small), noting that the modulus
of ellipticity is unchanged, while the W™ and W™ norms mentioned in
Lemma 5.4 are decreased. Thereafter we map back to D, utilizingthe obvious
counterparts of (3. l)-(3.8) to account for the influence of the linear maps.
We obtain then:

COROLLARY 5.4; There exist constants c5 > 0 and C such that for c5h g R9

We shall next consider the case when the function v in (5 1) has small
support. We start with two simple preliminary results.

LEMMA 5.5: For any e > 0 there exists a constant C such that if
diam (supp v) ^ R, then

CR || V\\

Proof: By Sobolev's inequality and the regularity results (2.3) we have
for p close to 1,

This proves the lemma.

LEMMA 5.6: For any e > 0 there exists a constant C such that if£%^Q (/j)
with diam (0) ^ R, then for \|/ e W\ (fi (*)),
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Proof: Using Sobolev's inequality for p large, we have

W ^ CK \

which proves the lemma.
For the rest of the section, let the function v in (5.1) have its support in

an element t. Following [15, 16] we have next

LEMMA 5.7: For any e > 0 there exists a constant C such that

Proof: Let x0 e t, and

àj = {x il-*-1 ^ \x-x0 I g 2-J}9 j = Jo, . . . , Jl9

where Q (h) <= { x : | x-x0 \ ^ 2"Jo }, and 2" J l " 3 ^ c5 h ^ 2" J l " 2 , with c5

as in Corollary 5.4. Put

^ i u . . . ufly+I), / = 1, 2,
and

U
j = Jo

Letting e = \|/-v|/ft we have

I k l I K ^ lklkKOr). (5.13)
Jo

With ^ = 2~j,

( 3 \1 / 2

4 Ĵ ^Iklk^-) (5.14)

and using Corollary 5.4,

1 | | | | (5.15)

One next finds that

f M k l k ^ I K I k } (5.16)
This can be seen by using a suitable function co E ̂ °° (Q2) with co = 1 on Q1.,
and which vanishes on the part of 8Qj which does not coincide with
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d€ï (h) n Qj-5, where Q}-5 = { x: 2'^2^5 ^ | x-x0 | ^ 2'j+U5 }. By the
counterpart of (2.3),

and using that Z,* \|/ = O on Q? (assuming, as we may, that c5 ^ max p„,
n

c/. (1.2')), one easily obtains (5.16).

Utilizing now (5.16) and Lemma 5.6 in (5.15),

and by Lemmas 5.5 and 5.3,

Thus, from (5.14),

One also has, using Lemma 5.3,

The desired result now follows from (5.13), and this complètes the proof
of the lemma.

The following result was used in the proof of Theorem 1.1. It is essentially
a conséquence of Lemma 5.7.

LEMMA 5.8: For any z > 0 there exists a constant C such that

Proof: For p slightly larger than 2 we have using Sobolev's inequality
and the inverse property (3.11),

and by Lemmas 5.3 and 5.5,

Thus it suffices to estimate || \|/ft ||^2(nh).
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For T an element,

By (3.11),

ll^-nvjf \\nm s ch-1 ||i|/„-nv|f \\nm è
+ ch-1\\^-u

Thus, summing and using Lemma 5.7,

By (3.9) we have

ft-1||n^-*|Ui(0lo+||ni|f-+||^(0|l) g c\\*\\wi{aw), q > î,

and since from (2.3) it follows for q close to 1 that

we obtain the desired resuit.
This proves the lemma.
Finally, we shall prove the followmg resuit which will be needed in Section 6

to handle the discrepancy between Q and Qh. Recall that v|/ is the solution
of (5.1) with v supported in an element t.

LEMMA 5.9: For any s > 0 there exists a constant C such that

Proof: Let S = Q (h)\Qh. Partition S into pièces Sp

Sj = {xeS il"!'1 < distO, 0 ^ 2"J '}?

for j = Jo, . . . , / i . Hère if 2~Jl ^ h, then redefine Jx to be such that
2" 7 1 " 1 ^ h < 2~Jl and let

We have

IK 1kl (S) £ lklta<s,)+I|| +
Jo

where, if dist (t, dQ (h)) ^ h, the first term on the right is missing.
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If the first term on the right of (5.17) is there, then for p large and using
Sobolev's inequality,

To estimate the contributions from Sj9 put dj = 2~J. With/> large we have

cs,). (5.19)

Letting Sj <= Q, where Q,- is a suitable domain of diameter less than C df,-,
and dist (Clj9 t) ^ dj/49 we have, employing an affine transformation x —• x/^.
in^Sobolev's inequality and using (3. l)-(3.8) that

The constant C here can be made independent of j by a suitable choice of Q,-
By Lemma 5.6 and the obvious counterpart of (5.16) we obtain

^ Cd) "E11 \|/1\wi ia (h))>

Thus, using Lemma 5.5,

Combining this with (5.19) and inserting the result (and (5.18) if appro-
priate) into (5.17), we get for p large,

This proves the lemma.

REMARK: If we demand more smoothness of the coefficients of L* and of
the boundary dQ, then the above Lemma 5.9 can be proven in a somewhat
more straightforward fashion by representing \|/ in terms of v via the Green's
function and using the estimâtes of [2] or [10] for derivatives of the Green's
function (when the singularity is close to the boundary, in particular).
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6. MAXIMUM NORM ESTIMATES IN THE CASE WITHOUT NUMERICAL
INTEGRATION

Let u (h) be the solution of the problem

(Lu(h) = f in fl(fc),
( u(h) = 0 on ôfi(fc),

(where ƒ and the coefficients of L are extended from Q), and let wft e Sh be
such that

Boh(S*-«W,X) = 0 for %eS\

Relying on the results of Section 5, in particular Lemmas 5.7 and 5.9,
we shall show the following.

LEMMA 6.1: For any 8 > 0 the re exists a constant C such that for h suffi-
ciently small,

Proof: Let x0 be such that

If x0 $Qh, then (2.8) (which holds on O (h)\Qh) shows the desired result.
Assume hence that x0 belongs to an element t. Using (3.11) we have for

By Lemma 5.2, and (2.3) and Sobolev's inequality for largep = p (s) < oo,
we may choose % so that

j
^ C/z3"8|| ƒ ||n(fl(ft» ^ C^3"£ | | ƒ | | ^3 ( n ) .

It remains therefore to show that

We have

'lu*,—w(rt)| |L2(0 = sup
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For fixed v as above let

L*\|/ = u in ïi(fc),

\|/ = 0 on 3Q(fc).

Then with \|/ft as in (5.2) we get for arbitrary % in £*,

(uh-u{h\ v) = BQ(h)(uh-u(h), vlO

Thus, with 5 = Q (h)\Qh,

\{uh-u{h\v)\

(6.2)

We proceed to estimate the four norms occuring on the right.
Clearly,

H l k l I l l (6.3)
Furthermore, by Lemma 5.9,

Jlvl/II^^C/^IHI^. (6.4)
By Lemma 5.2 we may choose % such that with/? < oo, using also Sobolev's
inequality and (2.3),

iix-wWll^C^^C^-^lluWlJ^^^^C^-^l/ll^^ (6.5)
Lastly, by Lemma 5.7,

\\^-^H\\wuah)^Ch2^\\v\\L2ity (6.6)

Inserting (6.3)-(6.6) into (6.2) we obtain the desired result (6.1). This
proves the lemma.

Finally we shall dérive the following simple (and not very sharp) consé-
quence of Lemma 6.1. The result was used in the proof of Theorem 1.1.

LEMMA 6.2: For any 8 > 0 there exists a constant C such that

Proof: Consider a typical element T. For % = II u (h) e Sh and for p large
we have by (3.11),

2i>\\x-u^
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The two last terms on the right are easily seen to be bounded by the correct
quantities, by (3.9), (2.3) and Sobolev's inequality.

Next, by (3.10),

and it follows from Lemma 6.1, (3.9), (2.3) and Sobolev's inequalities that

\\ûh-X

This proves the lemma.
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