Nous déterminons la structure du groupe de Galois Gal de l’extension maximale non ramifiée de chaque corps quadratique imaginaire de conducteur sous GRH). Pour tous ces corps , l’extension coïncide avec , ou avec le corps de classes de Hilbert de , ou avec le second corps de classes de Hilbert de ou avec le troisième corps de classes de Hilbert de . Les bornes d’Odlyzko sur les discriminants et les informations sur la structure des groupes de classes obtenues par l’action du groupe de Galois sur les groupes de classes sont ici essentielles. Nous utilisons aussi des relations sur le nombre de classes et un ordinateur pour le calcul du nombre de classes de corps de bas degré pour obtenir le nombre de classes de corps de degré plus élevé. Nous utilisons aussi des résultats sur les tours de corps de classes, ainsi que notre connaissance des -groupes d’ordre et des groupes linéaires sur des corps finis.
We determine the structures of the Galois groups Gal of the maximal unramified extensions of imaginary quadratic number fields of conductors under the Generalized Riemann Hypothesis). For all such , is , the Hilbert class field of , the second Hilbert class field of , or the third Hilbert class field of . The use of Odlyzko’s discriminant bounds and information on the structure of class groups obtained by using the action of Galois groups on class groups is essential. We also use class number relations and a computer for calculation of class numbers of fields of low degrees in order to get class numbers of fields of higher degrees. Results on class field towers and the knowledge of the -groups of orders and linear groups over finite fields are also used.
Mots-clés : maximal unramified extension, imaginary quadratic number field, discriminant bounds, class field tower
@article{JTNB_1997__9_2_405_0, author = {Yamamura, Ken}, title = {Maximal unramified extensions of imaginary quadratic number fields of small conductors}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {405--448}, publisher = {Universit\'e Bordeaux I}, volume = {9}, number = {2}, year = {1997}, mrnumber = {1617407}, zbl = {0905.11048}, language = {en}, url = {http://www.numdam.org/item/JTNB_1997__9_2_405_0/} }
TY - JOUR AU - Yamamura, Ken TI - Maximal unramified extensions of imaginary quadratic number fields of small conductors JO - Journal de théorie des nombres de Bordeaux PY - 1997 SP - 405 EP - 448 VL - 9 IS - 2 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1997__9_2_405_0/ LA - en ID - JTNB_1997__9_2_405_0 ER -
%0 Journal Article %A Yamamura, Ken %T Maximal unramified extensions of imaginary quadratic number fields of small conductors %J Journal de théorie des nombres de Bordeaux %D 1997 %P 405-448 %V 9 %N 2 %I Université Bordeaux I %U http://www.numdam.org/item/JTNB_1997__9_2_405_0/ %G en %F JTNB_1997__9_2_405_0
Yamamura, Ken. Maximal unramified extensions of imaginary quadratic number fields of small conductors. Journal de théorie des nombres de Bordeaux, Tome 9 (1997) no. 2, pp. 405-448. http://www.numdam.org/item/JTNB_1997__9_2_405_0/
1 The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), no. 4, 321-334; MR 93b:11144. | EuDML | MR | Zbl
,2 The imaginary quadratic fields of small odd class numbers, preprint, 1993. | MR | Zbl
, , and ,3 A table of A5-fields, On Artin's conjecture for odd 2-dimensional representations (G. Frey, ed.), Lecture Notes in Math., vol. 1585, Springer-Verlag, New York and Berlin, 1994, pp. 37-46, 122-141; MR 96e:11141. | MR | Zbl
and ,4 Remarks concerning the 2-Hilbert class field of imaginary quadratic number fields, Bull Austral. Math. Soc. 48 (1993), no. 3, 379-383; MR 94m:11133; Corrigenda, ibid. 50 (1994), no. 2, 351-352. | MR | Zbl
,5 Imaginary quadratic fields k with cyclic Cl2(k1), J. Number Theory 67 (1997), no. 2, 229-245. | MR | Zbl
, , and ,6 Beziehung zwischen Klassenzahl von Teilkörpern eines galoisschen Körpers, Math. Nachr. 4 (1951), no. 139, 158-174; MR 12, 593b; reprinted in Collected papers, vol. III, MIT Press, Cambridge, Mass.-London, 1980, pp. 497-513. | MR | Zbl
,7 Small class number and extreme values of L-functions of quadratic fields, Math. Comp. 31 (1977), no. 139, 786-796; MR 55 #12684. | MR | Zbl
,8 The Sylow 2-subgroups of the finite classical groups, J. Algebra 1 (1964), no. 2, 139-151; MR 29 #3548. | MR | Zbl
and ,9 Nombre de classes d'idéaux d'une extension diédrale d'un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 7, 483-486; MR 80c:12012. | MR | Zbl
,10 Heuristics on class groups of number fields, Number Theory, Noordwijkerhout, 1983 (H. Jager, ed.), Lecture Notes in Math., vol. 1068, Springer-Verlag, Berlin and New York, 1984, pp. 33-62; MR 85j:11144. | MR | Zbl
and , Jr.,11 A classical invitation to algebraic numbers and class fields, Universitext, Springer-Verlag, Berlin and New York, 1978; MR 80c:12001. | MR | Zbl
,12 Tables minorant la racine n-ième du discriminant d'un corps de degré n, Publications Mathématiques d'Orsay 80, 6., Université de Paris-Sud, Département de Mathématique, Orsay, 1980; MR 82i:12007. | MR | Zbl
,13 On quartic fields of signature one with small discriminant. II, Math. Comp. 42 (1984), no. 166, 707-711; MR 85i:11092a; Corrigendum, ibid. 43 (1984), no. 168, 621; MR 85i:11092b. | MR | Zbl
,14 ____, On totally complex quartic fields with small discriminant, Proc. Cambridge Philos. Soc. 53 (1957), 1-4; MR 18, 565c. | MR | Zbl
15 ____, On relations between cubic and quartic fields, Quart. J. Math. Oxford (2) 13 (1962), 206-212; Corrigendum, ibid. (3) 26 (1975), no. 104, 511-512; MR 52 #8078. | MR
16 Unramified elliptic units, thesis, MIT, 1993.
,17 The groups of order 2n(n ≤ 6), The Macmillan Co., New York, 1964; MR 29 #5889. | Zbl
, Jr. and ,18 Einheiten und Divisorenklassen in Galois'schen algebraischen Zahlkörpern mit Diedergruppe der Ordnung 2l für eine ungerade Primzahll, Acta Arith. 33 (1977), no. 4, 355-364; MR 56 #11955. | MR | Zbl
,19 Sur le nombre de classes de certaines extensions métacycliques sur Q ou sur un corps quadratiques imaginaires, J. Math. Soc. Japan 30 (1978), no. 2, 237-248; MR 58 #5587. | MR | Zbl
et ,20 On elliptic units and class number of a certain dihedral extension of degree 2l, Acta Arith. 45 (1985), no. 1, 35-45; MR 86m:11081. | MR | Zbl
,21 Construction of class fields, Seminar on Complex Multiplication, Chap. VII, Lecture Notes in Math., vol. 21, Springer-Verlag, Berlin and New York, 1966. | MR
,22 Endliche Gruppen I, Die Grundlehren der math. Wiss., Bd. 134, Springer-Verlag, Berlin and New York, 1967; MR 37 #302. | MR | Zbl
,23 Sur les extensions de Q à groupe de Galois S4 et S4, Acta Arith. 70 (1995), no. 3, 259-276; MR 95m:11127. | MR | Zbl
,24 On quartic fields with symmetric group, Number theory (R. A. Mollin, ed.), de Gruyter, Berlin, 1990, pp. 287-297; MR 92e:11113. | MR | Zbl
and ,25 Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94, J. Number Theory 8 (1976), no. 3, 271-279; MR 54 #5188. | MR | Zbl
,26 Algebraic number fields with the discriminant equal to that of a quadratic number field, J. Math. Soc. Japan 47 (1995), no. 1, 31-36; MR 95h:11121. | MR | Zbl
,27 Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J. 1 (1950), 1-10; MR 12, 593a. | MR | Zbl
,28 Kuroda's class number formula, Acta Arith. 66 (1994), no. 3, 245-260; MR 95f:11090. | MR | Zbl
,29 ____, On 2-class field towers of imaginary quadratic number fields, J. Théor. Nombres Bordeaux 6 (1994), no. 2, 261-272; MR 96k:11136. | Numdam | MR
30 ____, On unramified quaternion extension of imaginary quadratic number fields, J. Théor. Nombres Bordeaux 9 (1997), no. 1, 51-68. | Numdam | MR
31 ____, On 2-Class field towers of some imaginary quadratic number fields, Abh. Math. Sem. Univ. Hamburg 67 (1997), 205-214. | MR | Zbl
32 ____, Private communication, 1996.
33 Corps de nombres de classes 1, Séminaire de Théorie des Nombres 1977-1978, Exp. No. 12, CNRS, Talence, 1978; MR 80k:12009. | MR | Zbl
,34 ____, Petits discriminants des corps de nombres, Number theory days, 1980 (Exeter, 1980), London Math. Soc. Lecture Note Ser. 56, Cambridge Univ. Press, Cambridge, New York, 1982, pp. 151-193; MR 84g:12009. | MR
35 Class numbers of real cyclic number fields with small conductor, Compositio Math. 37 (1978), no. 3, 297-319; MR 80e:12005. | Numdam | MR | Zbl
,36 Unités et nombre de classes d'une extension galoisienne diédrale de Q, Abh. Math. Sem. Univ. Hamburg 48 (1979), 54-75; MR 81h:12009. | MR | Zbl
,37 On the existence of unramified p-extensions, Osaka J. Math. 28 (1991), no. 1, 55-62; MR 92e:11115. | MR | Zbl
,38 Discriminant bounds, (unpublished tables), Nov. 29th 1976.
,39 ____, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119-141; MR 91i:11154. | Numdam | MR | Zbl
40 Nombres de classes de corps quadratiques imaginaires, Sém. Bourbaki 1983-1984, Exp. 631, 14pp; MR 86k:11064. | Numdam | MR | Zbl
,41 Corps sextique primitifs, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 4, 757-767; MR 92a:11123. | Numdam | MR | Zbl
,42 Minimal presentations for groups of order 2n, n ≦ 6, J. Austral. Math. Soc. 15 (1973), 461-469; MR 49 #406. | Zbl
and ,43 Private communication, 1996.
,44 A table of quintic number fields, Math. Comp. 63 (1994), no. 207, 361-374; MR 94i:11108. | MR | Zbl
, and ,45 Modular forms of weight one and Galois representations, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (A. Fröhlich, ed.), Academic Press, London, 1977, pp. 193-268; MR 56 #8497; repreinted in Collected papres, vol. III, Springer-Verlag, New York and Berlin, 1986, pp. 292-367. | MR | Zbl
,46 ____, Topics in Galois theory, Research Notes in Math., vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992; MR 94d:12006. | MR | Zbl
47 The primitive soluble permutation groups of degree less than 256, Lecture Notes in Math., vol. 1519, Springer-Verlag, Berlin and New York, 1992; MR 93g:20006. | MR | Zbl
,48 Computation of real quadratic fields with class number one, Math. Comp. 51 (1988), no. 184, 809-824; MR 90b:11106. | MR | Zbl
and ,49 A remark on the class field tower, J. London Math. Soc. 12 (1937), 82-85. | JFM | Zbl
,50 Class number computations of real abelian number fields, Math. Comp. 39 (1982), no. 160, 693-707; MR 84e:12005. | MR | Zbl
,51 On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. IA 13 (1966), 201-209; MR 35 #5414. | MR | Zbl
,52 Class number 5, 6 and 7, Math. Comp. 65 (1996), no. 214, 785-800; MR 96g:11135. | MR | Zbl
,53 Introduction to Cyclotomic Fields, Graduate Text in Math., vol. 83, Springer-Verlag, Berlin and New York, 1982; MR 85g:11101. | MR | Zbl
,54 Divisibility by 16 of class numbers of quadratic fields whose 2-class groups are cyclic, Osaka J. Math. 21 (1984), no. 1, 1-22; MR 85g:11092. | MR | Zbl
,55 On unramified Galois extensions of real quadratic number fields, Osaka J. Math. 23 (1986), no. 2, 471-486; MR 88a:11112. | MR | Zbl
,56 ____, Some analogue of Hilbert's irreducibility theorem and the distribution of algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. IA 38 (1991), no. 1, 99-135; MR 92e:11132. | MR | Zbl
57 ____, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), no. 206, 899-921; MR 94g:11096. | MR | Zbl
58 ____, The maximal unramified extensions of the imaginary quadratic number fields with class number two, J. Number Theory 60 (1996), no. 2, 42-50; MR 97g:11119. | MR | Zbl
59 ____, Determination of the non-CM imaginary normal octic number fields with class number one, submitted for publication.
60 ____, Real quadratic number fields with class number one having an unramified An-extension, in preparation.
61 Computations of Galois groups, Proc. Symp. Group theory and its application (T. Kondo, ed.), 1981, pp. 9-57. (Japanese)
,