On propose un modèle du mouvement brownien relatif aux diviseurs d’un entier, et on établit la convergence faible de la mesure associée dans l’espace . On obtient un résultat analogue à celui obtenu par Erdös pour les diviseurs premiers [6] (cf. [14] pour une démonstration). Ces résultats et les recherches de l’auteur [15] étendent l’étude [9] de la distribution des diviseurs. Notre approche s’appuie sur les théorèmes limites fonctionnels en théorie des probabilités.
A model of the Brownian motion defined in terms of the natural divisors is proposed and weak convergence of the related measures in the space [0,1] is proved. An analogon of the Erdös arcsine law, known for the prime divisors [6] (see [14] for the proof), is obtained. These results together with the author’s investigation [15] extend the systematic study [9] of the distribution of natural divisors. Our approach is based upon the functional limit theorems of probability theory.
@article{JTNB_1996__8_1_159_0, author = {Manstavi\v{c}ius, Eugenijus}, title = {Natural divisors and the brownian motion}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {159--171}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {1}, year = {1996}, mrnumber = {1399952}, zbl = {0864.11040}, language = {en}, url = {http://www.numdam.org/item/JTNB_1996__8_1_159_0/} }
Manstavičius, Eugenijus. Natural divisors and the brownian motion. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 1, pp. 159-171. http://www.numdam.org/item/JTNB_1996__8_1_159_0/
[1] Probabilistic methods in the theory of arithmetic functions, Ph.D. dissertation, The Indian Statistical Institute, Calcutta, (1973).
,[2] Convergence of Probability Measures, Wiley & Sons, New York, (1968). | MR | Zbl
,[3] Additive functions and Brownian motion, Notices Amer. Math. Soc. 17 (1970), 1050.
,[4] The probability theory of additive arithmetic functions, The Annals of Probab. 2 No 5 (1974), 749-791. | MR | Zbl
,[5] Lois de répartition des diviseurs, 1, Acta Arithm 34 (1979), 273-285. | MR | Zbl
, & ,[6] On the distribution of prime divisors, Aequationes Math. 2 (1969), 177-183. | MR | Zbl
,[7] On the number of positive sums of independent random variables, Bull. of the American Math. Soc. 53 (1947), 1011-1020. | MR | Zbl
, ,[8] On the functional limit theorems of the probabilistic number theory, Lithuanian Math.J. 24 No 2 (1984), 72-81, (Russian). | MR | Zbl
, ,[9] Divisors, Cambridge University Press Cambridge (1988). | MR | Zbl
, ,[10] Probabilistic Methods in the Theory of Numbers Transl. Math. Monographs, Amer.Math.Soc., Providence, R.I. 11 (1964). | MR | Zbl
,[11] Probabality Theory, D. van Nostrand Company, New York (1963), (3rd edition). | MR | Zbl
,[12] Arithmetic simulation of stochastic processes, Lithuanian Math. J. 24 No 3 (1984)), 276-285. | Zbl
,[13] An invariance principle for additive arithmetic functions, Soviet Math. Dokl. 37 No 1 (1988), 259-263. | MR | Zbl
,[14] Probability Theory and Mathematical Statistics. Proceedings of the Sixth Vilnius Conference" (1993) B.Grigelionis et al Eds) VSP/TEV, (1994), 533-539. | MR | Zbl
, "[15] Functional approach in the divisor distribution problems, Acta Math. Hungarica 66 No 3 (1995), 343-359. | MR | Zbl
,[16] Arithmetic functions and Brownian motion, Proc. Sympos. Pure Math. 24 (1973), 233-246. | MR | Zbl
,[17] Effective results in probabilistic number theory, In, Théorie élémentaire et analytique des nombres ed. J.Coquet, 107-130, Dépt. Math. Univ. Valenciennes,.
,[18] Lois de répartition des diviseurs, 4, Ann. Inst. Fourier 29 (1979), 1-15. | Numdam | MR | Zbl
,[19] On arithmetical modelling of the Brownian motion, Dokl. Acad. Sci. Tadz.SSR 25 No 4 (1982), 207-211, (Russian). | MR | Zbl
, ,[20] On arithmetical modelling of random processes with independent increments, Dokl. Acad. Sci. TadzSSR 27 No 10 (1984), 556-559, (Russian). | MR | Zbl
, ,