@article{JSFS_2000__141_1-2_149_0, author = {Istas, Jacques}, title = {Identification des param\`etres d'un processus gaussien fractionnaire}, journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique}, pages = {149--166}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {141}, number = {1-2}, year = {2000}, language = {fr}, url = {http://www.numdam.org/item/JSFS_2000__141_1-2_149_0/} }
TY - JOUR AU - Istas, Jacques TI - Identification des paramètres d'un processus gaussien fractionnaire JO - Journal de la Société française de statistique PY - 2000 SP - 149 EP - 166 VL - 141 IS - 1-2 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2000__141_1-2_149_0/ LA - fr ID - JSFS_2000__141_1-2_149_0 ER -
%0 Journal Article %A Istas, Jacques %T Identification des paramètres d'un processus gaussien fractionnaire %J Journal de la Société française de statistique %D 2000 %P 149-166 %V 141 %N 1-2 %I Société française de statistique %U http://www.numdam.org/item/JSFS_2000__141_1-2_149_0/ %G fr %F JSFS_2000__141_1-2_149_0
Istas, Jacques. Identification des paramètres d'un processus gaussien fractionnaire. Journal de la Société française de statistique, Tome 141 (2000) no. 1-2, pp. 149-166. http://www.numdam.org/item/JSFS_2000__141_1-2_149_0/
[Ayache et Lévy-Vehel (1999)] Generalized Multifractional Brownian Motion: definition and preliminary results. In. M. Dekking, J. Vehel, E. Lutton and C. Tricot (eds) Fractals : Theory and Application in Engineering. Springer-Verlag, 17-32. | MR | Zbl
et (1999).[Ayache et Lévy-Vehel (2000)] The generalized multifractional brownian motion. Stat. Inf. Stoc. Proc. (A paraître). | Zbl
et (2000).[Bachelier (1900)] Théorie de la spéculation. Gautier-Villars, Paris. | JFM
(1900).[Benassi et al. (1996)] Gaussian Processes and Pseudodifferential Elliptic operators. Revista Mathematica Iberoamericana. 13 (1) 19-90. | Zbl
, et (1996).[Benassi et al. (1998a)] Identification of Filtered White Noises. Stock. Proc. Appl. 75 31-49. | MR | Zbl
, , et ( 1998a).[Benassi et al. (1998b)] Identifying the multifractional function of a Gaussian proces. Stat. and Proba. Letters. 39 337-345. | MR | Zbl
, , ( 1998b).[Benassi et al. (2000)] Identification of the Hurst index of a Step Fractional Brownian Motion. Stat. Inf. Stoc. Proc, Vol. 3, Issue 1/2, p. 101-111. | MR | Zbl
, , , et (2000).[Benassi et Istas (2001)] Processus autosimilaires. Fractals et Lois d'échelle, IC2, Abry, P. Goncalves, P. Lévy-Vehel Eds., Hermès (A paraître).
et (2001).[Beran (1994)] Statistics for long memory process. Chapman and Hall. | MR | Zbl
(1994).[Bertrand (2000)] A local method for estimating change points: the hat-function. Statistics, Vol. 34, n° 3, p. 215-235. | MR | Zbl
; (2000).[Black et Scholes (1973)] The Pricing of Options and Corporate Liabilities. Journal of Political Economy. 81 7-54. | Zbl
et (1973).[Cœurjolly (2000a)] Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inf. Stoc. Proc. (à paraître). | Zbl
( 2000a).[Cœurjolly (2000b)] Simulation et identification of the fractional brownian motion: a bibliographical and comparative study. J. Stat. Software, Vol. 5.
( 2000b).[Cœurjolly et Istas (2000)] Cramer-Rao bounds for Fractional Brownian Motions. Stat. and Proba. Letters. | Zbl
et (2000).[Cohen (1999)] From self-similarity to local self-similiraty: the estimation problem. In Fractals : Theory and Applications in Engineering, 3-16. M. Dekking, J. Lévy Véhel, E. Lutton and C. Tricot Eds, Springer Verlag. | MR | Zbl
(1999).[Cohen (2001)] Processus localement auto-similaires. in Fractals et Lois d'échelle, IC2, Abry, P. Goncalves, P. Lévy-Véhel Eds., Hermès (A paraître).
(2001).[Dalhaus (1989)] Efficient parameter estimation for self-similar processes. Ann Statist. 17 (4) 1749-1766. | MR | Zbl
(1989).[Grenander (1981)] Abstract inference. Wiley, New York. | MR
(1981).[Guyon et Léon (1989)] Convergence en loi des h-variations d'un processus gaussien stationnaire. Ann Inst. Poincaré. 25 265-282. | Numdam | MR | Zbl
(1989).[Hall et al. (1994)] Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings. J. Time Ser. Anal. 6 587-606. | MR | Zbl
, et (1994).[Hall et Wood (1993)] On the performance of box-counting estimators of fractal dimension. Biometrika. 80 246-252. | MR | Zbl
, (1993).[Istas (1996)] Estimating the singularity function of a gaussian process with applications. Scand. J. Statist. 23 (5) 581-596. | MR | Zbl
[Istas et Lang (1994)] Variations quadratiques et estimation de l'exposant de Holder local d'un processus gaussien. Cr. Acad. Sc. Paris, Série I. 319 201-206. | MR | Zbl
et (1994).[Istas et Lang (1997)] Quadratic variations and estimation of the Holder index of a gaussian process. Ann. Inst. Poincaré 33 (4) 407-436. | Numdam | MR | Zbl
et (1997).[Kolmogorov (1940)] Wienersche und einige andere interessante Kurcen im Hilbertsche Raum. (German). C; R. (Dokl) Acad. Sci. URSS.26 115-118. | JFM | MR | Zbl
(1940).[Léger et Pontier (1999)] Drap Brownien fractionnaire. C.R. Acad. Sc. Paris, Série I. 329 893-898. | MR | Zbl
et (1999).[Mandelbrot et Van Ness (1968)] Fractional Brownian Motions, Fractional Noises and Applications. SIA M Review. 10 422-437. | MR | Zbl
et (1968).[Meyer (1990)] Ondelettes et Opérateurs. volume 1. Hermann, Paris. | MR
(1990).[Neveu (1968)] Processus alatoires gaussiens. Presses de l'Université de Montréal, SMS. | MR | Zbl
(1968).[Peltier et Lévy-Véhel (1994)] A new method for estimating the parameter of fractional brownian motion. Rapport de recherches 2396, 1-40, disponible sur http://www-syntim.inria.fr/fractales/.
et (1994).