@article{AIHPB_1989__25_3_265_0, author = {Guyon, Xavier and Leon, Jos\'e}, title = {Convergence en loi des {H-variations} d'un processus gaussien stationnaire sur {R}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {265--282}, publisher = {Gauthier-Villars}, volume = {25}, number = {3}, year = {1989}, mrnumber = {1023952}, zbl = {0691.60017}, language = {fr}, url = {http://www.numdam.org/item/AIHPB_1989__25_3_265_0/} }
TY - JOUR AU - Guyon, Xavier AU - Leon, José TI - Convergence en loi des H-variations d'un processus gaussien stationnaire sur R JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1989 SP - 265 EP - 282 VL - 25 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1989__25_3_265_0/ LA - fr ID - AIHPB_1989__25_3_265_0 ER -
%0 Journal Article %A Guyon, Xavier %A Leon, José %T Convergence en loi des H-variations d'un processus gaussien stationnaire sur R %J Annales de l'I.H.P. Probabilités et statistiques %D 1989 %P 265-282 %V 25 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_1989__25_3_265_0/ %G fr %F AIHPB_1989__25_3_265_0
Guyon, Xavier; Leon, José. Convergence en loi des H-variations d'un processus gaussien stationnaire sur R. Annales de l'I.H.P. Probabilités et statistiques, Tome 25 (1989) no. 3, pp. 265-282. http://www.numdam.org/item/AIHPB_1989__25_3_265_0/
[1] An Introduction to Probability Theory and its Application, Tome II, J. Wiley, 1966. | MR | Zbl
,[2] Generalized Functions, vol. 4: Applications of Harmonic Analysis, Acad. Press, 1964. | MR
et ,[3] Independence and Dependence, Proc. 4th Berkeley Symposium on Math. Stat. and Proba., 1961, p. 431-443. | MR | Zbl
,[4] The P(Φ)2 Euclidian Quantum Field Theory, Princeton Univ. Press, 1974. | MR | Zbl
,[5] Weak Convergence to Fractional Brownian Motion and to the Rosenblatt Process, Z. W. verb. Geb., vol. 31, 1975, 287-303. | MR | Zbl
,[6] Some Limit Theorems for Partial Sums of Quadratic Forms in Stationary Gaussian Variables, Z. W. veb. Geb., vol. 49, 1979, p. 125-132. | MR | Zbl
,[7] Non Central Limit Theorems for Non-Linear Functional of Gaussian Fields, Z. W. verb. Geb., vol. 50, 1979, p. 27-52. | MR | Zbl
et ,[8] Convergence of Integrated Processes of Arbitrary Hermite Rank, Z. W. verb. Geb., vol. 50, 1979, p. 53-83. | MR | Zbl
,[9] Law of the Iterated Logarithm for Sums of Non-Linear Functions of Gaussian Variables that Exhibit a Long Range Dependence, Z. W. verb. Geb., vol. 40, 1977, p. 203-238. | MR | Zbl
,[10] Multiple Wiener-Ito Integrals, L.N.M., n° 849, Springer-Verlag, 1981. | MR | Zbl
,[11] Central Limit Theorems for Non-Linear Functionals of Gaussian Fields, J. Multi. Anal., vol. 13, 1981, p. 425-441. | MR | Zbl
et ,[12] Variations des Champs Gaussiens stationnaires, Application à l'identification, Proba. Th. Rel. Fields, vol. 75, 1987, p. 179-193. | MR | Zbl
,[13] On the Variation of Gaussian Processes and Fields, Preprint U.C.V., Caracas, 1988. | MR
,[14] On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tracts n° 032, Math. Centre, Amsterdam, 1970. | MR | Zbl
,